
Implementation of a Compositional Performance

Analysis Algorithm for Probabilistic I/O

Automata

?

Eugene W. Stark, Giridhar Pemmasani

Department of Computer Science, State University of New York at Stony Brook,

Stony Brook, NY 11794 USA

Abstract. In previous papers, we de�ned the probabilistic I/O automata

model for speci�cation and modeling of probabilistic concurrent systems,

and we showed how certain performance measures for such systems could

be computed compositionally, one component at a time, without the need

for explicit construction of the full global state space. In this paper, we

report on our experiences in constructing and testing a computer imple-

mention of these compositional analysis algorithms. Our implementation,

which is coded in the functional programming language Standard ML,

uses exact rational arithmetic to calculate performance measures, and it

is also capable of producing symbolic rational function expressions that

describe the dependence of performance measures on a system parame-

ter.

1 Introduction

This research is aimed at the speci�cation, modeling, and performance analysis

of computational systems that exhibit concurrent, probabilistic, and real-time

behavior. We are primarily interested in �nite-state models of such systems, and

have as our objective the construction of e�cient tools that can analyze au-

tomatically various performance parameters and correctness properties of such

models for realistic systems. Communication protocols and embedded systems

are examples of the types of application domains to which we feel our meth-

ods could usefully be applied. We have developed a particular model, called

\probabilistic I/O automata" (PIOA) for representing such systems [WSS97],

and we have devised compositional methods for analyzing these representations

for certain properties [SS98]. Because compositional methods can avoid some of

the problems of state-space explosion, our compositional methods are potentially

applicable to much larger examples than existing, non-compositional techniques.

In this paper, we report on our experiences in constructing and testing a

computer implemention of the compositional analysis algorithms presented in

[SS98]. Our implementation, which is coded in the Standard ML functional pro-

gramming language, uses exact rational arithmetic to calculate compositionally,

?

Research supported in part by AFOSR Grant F49620-96-1-0087. E-mail addresses:

stark@cs.sunysb.edu, giri@cs.sunysb.edu

one component at a time, performance measures for systems of PIOAs. Examples

of the types of performance measures that can be handled with our approach

are the probability of the system performing a sequence of actions in a spec-

i�ed, possibly in�nite, set, or the expected time it will take for the system to

perform such a sequence. Our code is also capable of calculating symbolic ratio-

nal function expressions that describe the dependence of performance measures

on a system parameter. For example, for a communication protocol, we could

compute a formula that shows how the expected time for communication varies

with the probability of message loss by the communication medium.

We have successfully applied our code to analyze, within several hours of CPU

time, systems that would have over 70 million global states, if the global state

space were constructed explicitly. Smaller examples, with global state spaces in

the hundreds of thousands, run in a few minutes.

2 Probabilistic I/O Automata and Their Behaviors

2.1 Probabilistic I/O Automata

Probabilistic I/O automata (PIOA) [WSS97] are an adaptation of the I/O au-

tomata model developed by Nancy Lynch and her students [Lyn96], which they

have successfully applied to the hierarchical speci�cation and veri�cation of dis-

tributed algorithms. In this section, we recall the basic de�nitions of PIOAs and

related notions from [WSS97]. Following the presentation in [SS98], we give here

only enough of the formalism to set a context for discussing our implementa-

tion of the analysis algorithms. The reader wishing full details, with proofs and

discussion of the intuitions underlying the model, is referred to [WSS97] and

[SS98].

A �nite probabilistic I/O automaton is a tuple A = (Q; q

I

; E; �; �), where

{ Q is a �nite set of states;

{ q

I

2 Q is a distinguished start state;

{ E is a �nite set of actions, partitioned into disjoint sets of input, output,

and internal actions, which are denoted by E

in

, E

out

, and E

int

, respectively,

with the actions in E

loc

= E

out

[E

int

called locally controlled;

{ � : (Q � E � Q) ! [0; 1] is the transition probability function, which is

required to satisfy the following stochasticity conditions:

1.

P

r2Q

�(q; e; r) = 1, for all q 2 Q and all e 2 E

in

.

2. For all q 2 Q, if there exist e 2 E

loc

and r 2 Q such that �(q; e; r) > 0,

then

P

r2Q

P

e2E

loc

�(q; e; r) = 1,

{ � : Q! [0;1) is the rate function, which is required to satisfy the following

condition: for all q 2 Q, we have �(q) > 0 if and only if there exist e 2 E

loc

and r 2 Q such that �(q; e; r) > 0.

As discussed in [WSS97] and [SS98], the de�nitions of � and � above re
ect

the intuition we wish to capture concerning the execution of a system of PIOAs.

Upon arrival in a state q, a PIOA chooses randomly the length of time it will

spend in that state before executing its next \locally controlled" transition. The

random choice is made, independently of other system components, according

to an exponential holding time distribution whose mean is the reciprocal 1=�(q)

of the rate �(q) associated with that state. When the time to execute the next

locally controlled transition arrives, the probabilistic transition relation is con-

sulted to determine the speci�c action to be performed and the new state. An

input action may be applied by the environment at any time. In that case, the

probabilistic transition relation governs the choice of the next state, and what-

ever holding time had been chosen for the previous state is abandoned.

A �nite execution fragment for a probabilistic I/O automaton A is an alter-

nating sequence � of states and actions of the form

q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

;

such that for each k with 0 � k < n, either e

k

2 E and �(q

k

; e

k

; q

k+1

) > 0,

or else e

k

62 E and q

k+1

= q

k

. (Admitting the case e

k

62 E permits us to con-

sider execution fragments for systems containing A also as execution fragments

for A, even if these fragments happen to contain actions in which A does not

participate.) An execution fragment � as above is called an execution if q

0

= q

I

(the distinguished start state). We use the term trace to refer to a sequence of

actions. The trace of �, denoted tr(�), is the sequence of actions e

0

e

1

: : : e

n�1

appearing in �.

A �nite collection fA

i

: i 2 Ig of probabilistic I/O automata, where A

i

=

(Q

i

; q

I

i

; E

i

; �

i

; �

i

), is called compatible if for all i; j 2 I with i 6= j, we have

E

out

i

\ E

out

j

= ; and E

int

i

\ E

j

= ;. The composition of such a collection is

a PIOA (Q; q

I

; E; �; �), where Q is the cartesian product

Q

i2I

Q

i

, the initial

state q

I

is the tuple hq

I

i

: i 2 Ii, and the set E of actions is

S

i2I

E

i

, with

E

out

=

S

i2I

E

out

i

, E

int

=

S

i2I

E

int

i

, and E

in

= E n (E

out

[E

int

). Suppose

q 2 Q and r 2 Q are hq

i

: i 2 Ii and hr

i

: i 2 Ii, respectively. Then we de�ne

�(q) =

P

i2I

�

i

(q

i

). Adopting the convention that �

i

(q

i

; e; r

i

) = 1 if e 62 E

i

,

we de�ne �(q; e; r) = (�

j

(q

j

)=�(q))

Q

i2I

�

i

(q

i

; e; r

i

) if e 2 E

loc

j

for some j 2 I,

otherwise �(q; e; r) =

Q

i2I

�

i

(q

i

; e; r

i

).

The de�nitions of � and � above express the intuitive idea that the various

component PIOAs are in a race to see which of them will execute the next

locally controlled action. This competition will be won by the component that

has chosen the smallest holding time in its respective state, and the probability

that any given component will win the competition is given by the ratio of the

rate for the local state of that component over the sum of the rates for the local

states of all of the components. The time the system remains in a particular

global state before executing the next locally controlled action is the minimum

of the times that each component spends in its respective local state. This time

is governed by an exponential distribution, whose rate is the sum of the rates of

the distributions for each of the components.

In this paper, we shall generally be concerned with the composition of com-

patible 2-element sets fA;Bg of PIOAs, and we use the notation AkB to denote

such a composition.

2.2 Rated Traces, Observables, and Behaviors

Let E be a set of actions. A (�nite) rated trace � over E consists of an alternating

sequence of the form:

d

0

e

0

�!d

1

e

1

�! : : :

e

n�1

�!d

n

;

where the d

k

are nonnegative real numbers, called the rates, and the e

k

are

actions in E. The sequence e

0

; e

1

; : : : e

n�1

is called the trace of �, and we denote

it by tr(�). A rated trace is an abstraction of an execution fragment, in which

speci�c states have been replaced by their rates. There is a precise sense in

which all execution fragments having the same rated trace, for a PIOA A, are

probabilistically indistinguishable from each other under PIOA composition.

We use RTraces(E) to denote the set of all rated traces over E. We also use

the notation (d)

E

, or just (d), when E is clear from the context, to denote the

empty rated trace in RTraces(E), consisting of the single rate d and no actions.

An observable over a set of actions E is a mapping � : RTraces(E) ! R;

where R denotes the set of real numbers. If A is a PIOA with action set E

A

and

E is any other set of actions, then the E-behavior of A is the transformation of

observables:

B

A

E

: (RTraces(E [E

A

)!R)! (RTraces(E)!R)

whose de�nition is given by a certain weighted summation formula, reminiscent

of an expectation over rated traces. The complete de�nitions require more space

than is available here, and can be found in [SS98]. The next few paragraphs

outline the basic ideas.

Intuitively, an observable � : RTraces(E [E

A

) ! R represents a perfor-

mance measure applicable to a system consisting of A and possibly other com-

ponents. The function B

A

E

takes such a performance measure � and produces

a new performance measure B

A

E

� that incorporates the e�ect of A, and which

consequently is applicable to just the remaining system components. This per-

formance measure B

A

E

� is itself an observable, which takes as its argument a

rated trace � that represents constraints imposed on A by a particular execu-

tion of the other components. Given � and �, the quantity (B

A

E

�)� is obtained

by enumerating the set C

A

(�) of all executions � of A that are \compatible"

with the constraint �, \combining" each such execution � with � to obtain a

new constraint \� � �" that takes into account both � and �, and forming the

weighted summation

X

�2C

A

(�)

�(� � �)w

A

(�);

where the \weight" w

A

(�) of an execution � is de�ned as the product of the

probabilities of the transitions in �, times the product of the rates associated

with each state in � from which an action e 2 E

loc

A

occurs.

The following key facts about PIOA behaviors were shown in [SS98]:

1. Behaviors are a compositional description of PIOAs, in the following sense:

Suppose A and B are compatible PIOAs, and E is a set of actions. Then

B

AkB

E

= B

A

E

� B

B

E[E

A

= B

B

E

� B

A

E[E

B

:

2. Certain performance measures for PIOAs can be expressed in terms of the

application of their behaviors to observables. In particular, the probability

of a closed PIOA (i.e. one having no input actions) performing an execution

having a trace that lies in a speci�ed \target set" (we refer to this as the

completion probability for the set), or the expected time for a closed PIOA

to perform an execution having a trace in a speci�ed target set (we refer to

this as the expected completion time for the set), can be expressed in this

way.

As a speci�c example of how a performance measure can be represented by

an observable, suppose we are interested in the probability that a given closed

PIOA will eventually perform a particular action a. The relevant observable is

the function � whose value on a rated trace � of the form d

0

e

0

�!d

1

e

1

�! : : :

e

n�1

�!d

n

is given by

Q

n�1

k=0

1

d

k

; if e

n�1

= a and e

k

6= a for all other k, and whose value is

0 for all other �. Given a PIOA A, the quantity (B

A

;

�)(0) is then the desired

probability.

More generally, it is a consequence of the summation formula de�ning PIOA

behavior that, for a closed PIOA A, any performance measure that can be de-

scribed as the expectation of a function f on �nite delayed traces, can be ex-

pressed as the application of the behavior of A to a suitable observable. Included

among such performance measures are all transient properties of A that can be

expressed in terms of the sequence of actions performed in an execution, without

referring to the speci�c internal states traversed. In addition, inasmuch as cer-

tain types of long-run average performance measures can be expressed as limits

of transient properties \as time goes to in�nity," it is also possible to use our

observable/behavior paradigm for such properties as well.

Taken together, facts (1) and (2) above imply that the composition of a

compatible collection of PIOAs can be analyzed for certain performance mea-

sures by calculating the behavior of the composite PIOA in a compositional,

component-by-component fashion, and then extracting the quantities of interest

from the resulting behavior. In this approach, the composite PIOA is never com-

puted explicitly. Alternatively, such performance measures could be evaluated in

a global, non-compositional fashion by �rst performing an explicit calculation of

the composite PIOA, and performing a more traditional Markovian analysis on

it. The advantage of the compositional approach over the global approach is that

the former o�ers the possibility of applying reductions after each component is

treated, with a consequent reduction in the total space required for the analysis

and a corresponding increase in the size of the systems that can be treated.

3 Representable Observables

The key idea that makes it possible to actually calculate performance parameters

of PIOAs using the compositional approach outlined in the previous section is the

notion representable observable. This is an observable (i.e. a function from rated

traces to real numbers) whose value on a rated trace can be obtained by running

a kind of vector automaton on that rated trace. Our representable observables

can be viewed as generalizations of the classical notion of linear representation

for formal power series [BR84].

Formally, let Obs(E) denote the set of all observables � : RTraces(E) ! R.

Let Rat(x) denote the set of all rational functions of a single parameter x. Such

functions can be expressed as quotients of polynomials with integer coe�cients.

For n a nonnegative integer, an n-dimensional representation of an observable

� 2 Obs(E) consists of

{ An n-dimensional row vector C with rational numbers as entries.

{ An n-dimensional column vector D(x) with entries in Rat(x),

{ For each a 2 E, an n� n matrix M

a

(x), with entries in Rat(x),

such that for all rated traces � 2 RTraces(E) of the form:

d

0

e

0

�!d

1

e

1

�! : : :

e

m�1

�!d

m

;

the quantity �(�) is given by the formula:

�(�) = C

m�1

Y

k=0

M

e

k

(d

k

)

!

D(d

m

);

An observable � 2 Obs(E) is called representable if there exists an n-dimensional

representation of �, for some n.

As indicated above, a representation is essentially a kind of automaton that

computes an observable (i.e. a function on rated traces). The states of the au-

tomaton are n-dimensional row vectors of real numbers, with the vector C serving

as the initial state. If the automaton is in state X, and the next portion of the

input is d

a

�!, then the automaton multiplies the current state vector by the

matrix M

a

(d), and advances the input pointer. Upon reaching the end of the

input, if the current state is X

0

and the single remaining rate is d, then the row

vector X

0

is multiplied by the column vector D(d), to obtain a scalar, which

becomes the output produced by the automaton.

The main results of [SS98] were that algorithms exist (see details later in this

section) for the following operations on PIOAs and representations:

Application: Suppose A is a PIOA. If � is a representable observable in Obs(E),

and E

A

� E, then B

A

E

� is also a representable observable in Obs(E). More-

over, a representation of B

A

E

� can be computed from a representation of

�.

Minimization: There exists an algorithm that, given an n-dimensional repre-

sentation of an observable � 2 Obs(E), outputs an m-dimensional represen-

tation of �, which is minimal in the sense that any other representation of

� has dimension at least m.

Restriction: Suppose A is a PIOA, and � is a representable observable in

Obs(E [E

A

) for an arbitrary �nite set of actions E. Then a representation

of B

A

E

� can be computed from a representation of B

A

E[E

A

�.

In addition, we showed that representable observables exist corresponding to

a class of performance measures that includes completion time and completion

probability for target sets that are regular in the usual automata-theoretic sense.

Thus, completion probabilities or expected completion times for the closed com-

position of a compatible collection fA

1

; A

2

; : : :A

m

g of PIOAs may be calculated

compositionally as follows:

Compositional Analysis Method:

1. Let E = E

A

1

[E

A

2

[: : :[E

A

m

, and construct a representation for the ap-

propriate starting observable �

0

2 Obs(E), corresponding to the particular

performance measure to be analyzed.

2. Treating the component PIOAs A

i

one at a time, construct, successively,

representations for the observables �

1

, �

2

, : : :, �

m

, where �

k

= B

A

k

E

�

k�1

,

for k = 1; 2; : : : ;m. The construction of the representation of �

k

from �

k�1

is done by �rst using the Application algorithm to apply the behavior of A

k

,

and then using the Minimization algorithm to minimize the dimension of

the result. The order in which components are applied is inessential as far

as the correctness of the method is concerned.

3. Once a representation of �

m

= B

A

E

�

0

has been obtained, use the algorithm

for restriction to compute a representation for B

A

;

�

0

, and evaluate this rep-

resentation on the empty rated trace (0). The resulting scalar value is the

desired performance measure.

To prepare the way for discussing the implementation of the compositional

analysis technique outlined above, in the next few subsections we discuss in more

detail the mathematical constructions underlying the Application,Minimization,

and Restriction algorithms.

3.1 Application

The algorithm for application takes as input a PIOA A and an n-dimensional

representation

R = (C;D(x); fM

a

(x) : a 2 Eg)

of an observable � in Obs(E), where E

A

� E, and it constructs a representation

R

0

for the observable B

A

E

�. If the PIOA A hasm states: q

1

; q

2

; : : : ; q

m

, with q

1

the

distinguished start state, then the representation R

0

will be the mn-dimensional

representation

R

0

= (C

0

; D

0

(x); fM

0

a

(x) : a 2 Eg);

where C

0

, D

0

(x), and M

0

a

(x) are given in n-dimensional block form as follows:

C

0

= (C 0 : : : 0) D

0

(x) =

0

B

B

@

D(x+ �

A

(q

1

))

D(x+ �

A

(q

2

))

: : :

D(x + �

A

(q

m

))

1

C

C

A

(M

0

a

)

ij

(x) =

�

�

A

(q

i

; a; q

j

)M

a

(x+ �

A

(q

i

))�

A

(q

i

); if a 2 E

loc

A

;

�

A

(q

i

; a; q

j

)M

a

(x+ �

A

(q

i

)); otherwise:

In the above, an expression such as D(x + �

A

(q

1

)) denotes the result of sub-

stituting the linear polynomial x + �

A

(q

1

) for the variable x in each entry of

D(x).

3.2 Minimization

The algorithm for minimization takes as input an n-dimensional representation

R = (C;D(x); fM

a

(x) : a 2 Eg);

of an observable � 2 Obs(E), and ouptuts an m-dimensional representation

R

0

= (C

0

; D

0

(x); fM

0

a

(x) : a 2 Eg);

which is minimal. The algorithm involves performing two separate dimension-

reducing steps, which we refer to as Reachability and Observability, which are in

a sense dual to each other, and which can be applied in either order.

Reachability: Let S be the (column) vector space consisting of all solutions Y

to the (in�nite) system of all equations of the form:

C(

l�1

Y

k=0

M

a

k

(d

k

))Y = 0; (1)

where a

0

; a

1

; : : : ; a

l�1

range over actions in E, and d

0

; d

1

; : : : ; d

l�1

range over

nonnegative real numbers (or equivalently, nonnegative rational numbers).

Let S

?

denote the orthogonal complement of S; then S

?

is the least subspace

ofR

n

(rows) containing the start vector C and closed under multiplication on

the right by matrices of the formM

a

k

(d

k

). That is, S

?

is the least subspace

of R

n

containing all row vectors X that are reachable from the start vector

C by running the representation R on some rated trace.

If the solution space S has dimension zero, then do nothing. Otherwise,

suppose S has dimension k > 0, and let m = n� k be the dimension of S

?

.

Let P be an n�m matrix having the elements of an orthogonal basis for S

?

as its columns, and let Q be the m�n matrix whose rows are the same basis

vectors for S

?

, only with each vector divided by the square of its euclidean

norm, so that the equation QP = I is satis�ed. Then it can be shown (see

[SS98]) that the representation:

R

0

= (CP;QD(x); fQM

0

a

(x)P : a 2 Eg)

is an m-dimensional representation of the observable �.

Observability: Let S be the (row) vector space consisting of all solutions X to

the (in�nite) system of all equations of the form:

X(

l�1

Y

k=0

M

a

k

(d

k

))D(d

l

) = 0:

Then S is the greatest subspace of R

n

that consists entirely of row vectors X

that are unobservable, in the sense that it is impossible to obtain a nonzero

value by starting from X and running representation R on any rated trace.

If the solution space S has dimension zero, then do nothing. Otherwise, sup-

pose S has dimension k > 0, and let S

?

denote the orthogonal complement

of S, so that S

?

has dimensionm = n�k. Letting P , Q, and R

0

be as in the

Reachability case above, it can once again be shown that the representation

R

0

is an m-dimensional representation of the observable �.

Our minimization algorithm for representations of observables can be seen

as a variant of a classical algorithm of Sch�utzenberger [Sch61a,Sch61b,BR84] for

minimization of linear representations of formal power series.

3.3 Restriction

In [SS98] we de�ned an operation of restriction:

[-]

E

0

: Obs(E)! Obs(E

0

)

on observables, which, when applied to an observable � 2 Obs(E), produced a

certain observable [-]

E

0

2 Obs(E

0

), where E

0

� E. The restriction operation

was de�ned in such a way that the following property is satis�ed: for all PIOAs

A, all sets of actions E, and for all observables � 2 Obs(E [E

A

), we have:

B

A

E

� = [B

A

E[E

A

�]

E

Restriction on observables therefore gives us a way to obtain B

A

E

� from B

A

E[E

A

�.

This is of interest to us, because our compositional analysis method applied to

a PIOA A involves determining the observable B

A

;

�. The Application operation

by itself would only permit us to determine B

A

E

A

�; however Restriction can then

be applied to this to yield B

A

;

�.

As shown in [SS98], the Restriction operation can be performed algorithmi-

cally in terms of representations. The algorithm takes as input an n-dimensional

representation R = (C;D(x); fM

a

(x) : a 2 Eg) of an observable � 2 Obs(E).

De�ne

^

M (x) =

X

a2EnE

0

M

a

(x);

and let

^

M (x)

�

denote the Kleene star

^

M (x)

�

= I +

^

M(x)+

^

M (x)

2

+ : : : ; which,

if it exists, can be calculated as

^

M (x)

�

= (I �

^

M (x))

�1

: The algorithm outputs

the representation:

R = (C;

^

M(x)

�

D(x); f

^

M (x)

�

M

a

(x) : a 2 E

0

g);

which can be shown to be a representation of the observable [�]

E

0

.

3.4 Example

Let A be a two-state closed PIOA A, with states Q = fq; q

0

g, actions E = E

out

=

fa; bg, with �(q) = 3, �(q

0

) = 0, and with �(q; b; q) = �(q; a; q

0

) = 1=2 as the only

nonzero values of �. Let R = (C;D(x); fM

a

(x);M

b

(x)g) be the two-dimensional

representation with

C =

�

1 0

�

D(x) =

�

0

1

�

M

a

(x) =

�

0 1=x

0 0

�

M

b

(x) =

�

1=x 0

0 0

�

The reader may verify that this representation de�nes an observable � that

maps a rated trace � = d

0

e

0

�!d

1

e

1

�! : : :

e

n�1

�!d

n

to a nonzero value if and only if

e

n�1

= a and e

k

= b for all k < n�1, and in this case �(�) =

Q

n�1

k=0

(1=d

k

). More-

over, the Application construction may be used to calculate a four-dimensional

representation for B

A

E

�:

C =

�

1 0 0 0

�

D(x) =

0

B

B

@

0

1

0

1

1

C

C

A

M

a

(x) =

0

B

B

@

0 0 0

3

2(x+3)

0 0 0 0

0 0 0 0

0 0 0 0

1

C

C

A

M

b

(x) =

0

B

B

@

3

2(x+3)

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

C

C

A

from which it can be observed that

(B

A

E

�)� =

1

2

n

n�1

Y

k=0

3

d

k

+ 3

;

the probability of A performing the uninterrupted sequence of actions b

n�1

a, in

an environment that visits, successively, states with rates d

0

; d

1

; : : : ; d

n

.

Finally, the Restriction construction may be used to calculate a represen-

tation for B

A

;

� and show that its value on a rated trace (d) is the constant

1 (independent of d), the probability that A eventually performs action a in

an arbitrary environment. This calculation amounts to summing the quantity

(1=2)

n

(3=(0 + 3))

n

over all n > 0.

4 Implementation

We have constructed a computer implementation of the compositional analy-

sis method for PIOAs described above. The implementation consists of about

10,000 lines in the programming language Standard ML, about three-quarters

of which we wrote ourselves, and about one-quarter of which are subroutines

from the code libraries distributed with the Standard ML of New Jersey system.

Standard ML was chosen for the implementation because: (1) it is a very-high-

level language that was originally designed speci�cally for symbolic processing;

(2) its garbage-collected automatic storage management allowed us to rapidly

prototype a system with many fewer lines of code than would have been re-

quired, say, in C++; (3) it has an advanced modules facility that allowed us

to experiment rapidly with a variety of combinations of algorithms and data

representations; (4) it has a good compiler (SML of New Jersey) that produces

e�cient native code whose execution speed is within striking distance of C++

for symbolic processing applications.

Our system has the following main components:

{ Modules for performing basic arithmetic operations on arbitrary-precision

integers and rational numbers.

{ Modules for calculating with univariate polynomials and rational functions.

{ Modules implementing sparse vectors and matrices.

{ A PIOA module, which permits the construction of PIOAs, either \from

scratch," or as the composition of a compatible collection of previously con-

structed PIOAs, and which also provides routines for enumerating and iter-

ating over sets of PIOA executions.

{ Amodule implementing representable observables, and the Application,Min-

imization, and Restriction algorithms.

{ A module that permits the speci�cation of regular \target sets" by means of

deterministic �nite automata (DFAs), and of constructing from these DFAs

representations for the associated completion probability and expected com-

pletion time observables.

Except for some variables used to turn on debugging printout, and exceptions

used to handle error situations, the implementation is coded in a purely func-

tional style.

We have spent several man-months in testing the code and improving its

performance. As of this writing, the largest problem on which we have run the

system successfully is the analysis of the probability of the �rst player winning in

a model of a four-player, two-point jai-alai match. The model consists of a system

of nine component PIOAs, which, if the composition were explicitly constructed,

would have a total global state space of 78,764,805 (= 5 � 7

4

� 9

4

) states. (See

Section 5.1 for further details of this example.) The compositional analysis of

this system produces an exact rational answer (5=16) in 532 minutes of CPU

time on a 333MHz Sparc Ultra. In the next few sections, we mention some of

the more important ideas and techniques underlying our implementation.

4.1 Polynomials and Rational Functions

A central role is played in both the theory and the implementation by univari-

ate rational functions, which we have implemented as quotients of univariate

polynomials. When we began constructing the implementation, we did not know

whether it would be best to use polynomials with arbitrary-precision rational

coe�cients, polynomials with arbitrary-precision integer coe�cients, or polyno-

mials with
oating-point coe�cients. So, we built generic implementations that

can operate with any of these choices. Changing from one choice to another re-

quires only relinking of the modules; changes to the source code are not required.

A useful byproduct of our generic approach is that we obtain for free the addi-

tional ability to compute using polynomials having polynomials as coe�cients.

This permits us, in some cases, to obtain as the result of performance analysis a

symbolic expression that shows how the performance quantity of interest varies

with a parameter of the model.

The implementation of rational functions as quotients of polynomials requires

that the rational functions be maintained in canonical form, so that the greatest

common divisor (GCD) of the numerator and denominator is one. (If rational

functions are not maintained in canonical form, the size of the representation

tends to grow excessively, due to the accumulation of cancellable factors.) We

were initially not sure how critical the choice of GCD algorithm would be to the

performance of our algorithms, so we implemented three di�erent GCD algo-

rithms: the Euclidean algorithm, the primitive polynomial remainder sequence

(PPRS) algorithm and the subresultant polynomial remainder sequence (SPRS)

algorithm [Bro71]. In theory, the Euclidean algorithm poses a signi�cant danger

of explosion in the size of coe�cients of the intermediate polynomials. We found

this to be true for our application, and so we do not use this algorithm. The

PPRS algorithm handles the explosion problem by removing common factors

from the coe�cients of the intermediate polynomials produced during the GCD

algorithm. The SPRS algorithm has some advantages over the PPRS algorithm,

with respect to the use of the underlying GCD operation for coe�cients, but

in general will produce intermediate polynomials that are not as small as those

produced by the PPRS algorithm. However, in our benchmarks the SPRS algo-

rithm has generally produced satisfactory results. If size explosion should prove

to be a problem with examples we treat in the future, we will expend the e�ort

to implement one of the newer, modular GCD algorithms.

After experimentation with various combinations of coe�cients and GCD

algorithms, we settled on arbitrary-precision integer coe�cients and the SPRS

algorithm as our standard con�guration. All the benchmarks reported in this

paper were run in this way.

4.2 Sparse Vectors and Matrices

The vectors and matrices arising in the compositional analysis of systems of

PIOAs are sparse, and substantial economies of time and space are obtained by

taking advantage of this fact. Of the several representations we tried, we have

obtained our best performance results by representing sparse vectors as lists,

and sparse matrices as trees that map row indices to sparse vectors. Speci�cally,

sparse vectors are represented as triples

(dim, low, entries)

where dim is the dimension of the vector, low is an integer o�set, and entries

is a list of pairs (i,v). The meaning of such a pair is that v is the nonzero data

value at position i-low+1 in the vector. In general the list entries may contain

pairs (i,v) for which the relationship low <= i <= low+dim-1 is not satis�ed.

However, only pairs that do satisfy this relationship actually denote elements of

the vector; the other entries are ignored. This kind of representation permits us

to implement a constant-time \slicing" operation on vectors, which is useful for

some of our constructions on representations.

Sparse matrices are implemented as mappings from row indices to sparse

vectors. These mappings, which are implemented using the \binary map" mod-

ule distributed with the Standard ML of New Jersey system, use trees as the

underlying representation. The same dim/low scheme is used for matrices as for

vectors, to provide for e�cient slicing operations.

A signi�cant amount of the time spent in the minimization algorithm is

used in computing bases, for the null space S of a large matrix M , and for its

orthogonal complement S

?

. For this, we use a Gaussian elimination procedure.

Our Gaussian elimination routine is unremarkable except that it is coded in a

purely functional style, and we have gone to some trouble to make the code run

quickly. We use a pivoting technique to determine the row to eliminate against

at each iteration. However, the usual technique, of selecting as a pivot at the

kth iteration the row whose kth column contains the element of the greatest

magnitude, is di�cult to apply to non-numeric data such as polynomials or

rational functions, because the appropriate notion of magnitude is not clear.

So, at present we use as the pivot row the �rst row encountered that has a

nonzero entry in the kth column. Since in our standard con�guration we use

exact arithmetic, numerical stability is not a concern.

4.3 Algorithms on Representations

In this section, we discuss issues related to the implementation of the Applica-

tion, Minimization, and Restriction constructions on representations.

Application: Our implementation of the Application algorithm, with which

a PIOA behavior is applied to a representation, is a reasonably straightforward

transcription of the de�nition given in Section 3.1. As suggested by the de�nition

we construct the vectors C and D(x), as well as the matrices M

a

(x), by \past-

ing" together their constitutent blocks. As the algorithm is coded in a purely

functional style, some care is needed to avoid excessive copying of data struc-

tures during the pasting operations. Note that the constructions of D(x) and

the M

a

(x) require the use of symbolic arithmetic on rational functions, includ-

ing an operation for performing the symbolic substitution of a linear univariate

polynomial x+ d for the indeterminate x in a rational function r(x).

The time taken to run the Application algorithm does not contribute signif-

icantly to the running time of our benchmark examples, so we do not discuss it

further.

Restriction: In the �rst versions of our compositional analysis technique, we

attempted to apply the Restriction algorithm after each component was applied,

to restrict the set of actions to just those that interface with the system compo-

nents remaining to be treated. Our idea here was that performing such restriction

would permit the minimization algorithm to produce a greater reduction in di-

mension. However, a direct implementation of the Restriction algorithm outlined

above requires calculating the inverse of the matrix I �

^

M (x) symbolically, over

the �eld of rational functions in x. Although this can readily be done for small,

sparse matrices, once the number of dimensions increases beyond about 100, or

the matrices become more dense, there is a signi�cant danger of explosion in the

size of the rational expressions produced in calculating the inverse. We have not

found it feasible to apply the Restriction operation to representations having

thousands of dimensions.

Fortunately, for the purpose of calculating numerical completion probabili-

ties or expected completion times, it is not necessary to apply the Restriction

operation as each component is treated. Rather, the application of Restriction

can be delayed until after all components have been treated, and the �nal repre-

sentation for the observable �

m

= B

A

E

�

0

for the entire system has been obtained.

At this point, the minimization algorithm has typically produced a signi�cant

reduction in the number of dimensions. In addition, extracting the �nal numer-

ical answer requires only that we evaluate the representation for [�

m

]

;

on the

empty rated trace (0), not that we compute this representation in full. Inspec-

tion of the de�nition of Restriction shows that the value of [�

m

]

;

on the empty

rated trace (0) can be expressed solely in terms of particular instances, D(0) and

fM

a

(0) : a 2 Eg, of the components of a representation for �

m

; in particular

the full symbolic representation of D(x) and the M

a

(x) is not required. Thus,

we can completely avoid symbolic matrix inversion by �rst \instantiating" the

representation for �

m

at (0) to obtain a \constant" representation:

(C;D(0); fM

a

(0) : a 2 Eg);

and then applying the Restriction algorithm to this to yield the value of [�

m

]

;

at (0).

Minimization: The minimization algorithm is what consumes most of the CPU

cycles in all but the smallest examples, and it is what we have spent the most

time trying to optimize.

The �rst thing to note is that the observability portion of the minimization

algorithm is essentially a \time-reversed" version of the reachability portion, and

we can use the reachability code for the observability part if we interchange the

role of the starting vector C and the output vector D(x), and transpose all the

matrices M

a

(x). To eliminate the asymmetry between the scalar vector C and

the vector D(x) of rational functions, in our implementation we treat C as a

vector of rational functions that happen to be constant.

To achieve full minimality, both the reachability and observability portions

of the algorithm have to be run, in general. Most of the time spent in these

algorithms involves an iterative search for the spaces of \reachable states" and

\unobservable states" described in Section 3.2. Since we do not have any a

priori idea which of the two spaces will be found more quickly, we dovetail the

two iterations in such a way as to spend about the same amount of work on

each. Whichever search �nishes �rst has its corresponding reduction applied to

the representation under consideration, and the slower search is then restarted

on the reduced representation.

Though reachability and observability are in theory just time-reversed ver-

sions of each other, in practice they exhibit signi�cant qualitative di�erences.

In particular, we have found that, whereas the reachability algorithm generally

tends to run quickly, the observability algorithm often runs much more slowly.

We attribute the di�erences between these two algorithms to the fact that the

reachability algorithm involves a search \forward in time" with a low \branch-

ing factor" (see below) that is probably related to the amount of concurrency

in the system being analyzed, whereas the observability algorithm involves a

search \backward in time", which has a higher branching factor. The observ-

ability algorithm also tends to destroy sparseness in the intermediate vectors

and matrices it produces, further contributing to a slower running time. In our

benchmark examples, we have found that observability algorithm runs slowly

enough that any speedup from the additional reduction in dimension it might

a�ord is generally overshadowed by the time taken to �nd that reduction. Our

fastest benchmark times at present are generally obtained with the observability

portion of the minimization algorithm disabled.

We now describe in more detail the method we use to solve the equations (1)

of Section 3.2 to obtain a basis for the space of \reachable states" for a represen-

tation. The algorithm is essentially a �xed-point iteration to search for the least

subspace of n-dimensional Euclidean space that contains the starting vector C

of the representation being minimized, and which is closed under multiplication

on the right by the in�nite set of matrices M

a

(d), where a ranges over the set

of actions of the system under consideration, and d ranges over the rationals.

The input to the kth iteration is pair of matrices (B

k

; C

k

), where B

k

is a row

basis for an m

k

-dimensional subspace S

k

of n-dimensional Euclidean space, and

C

k

is a column basis for its orthogonal complement S

?

k

. Initially, B

0

is taken to

be the 1� n matrix having the starting vector C as its only row. The output of

the kth iteration is a new such pair of matrices (B

k+1

; C

k+1

), where the space

S

k+1

spanned by the rows of B

k+1

is that spanned by the rows of B

k

and all

vectors of the form XM

a

(d) with X a row of B

k

, a an action, and d a rational

number. Since S

k

is a subspace of S

k+1

, the number of rows m

k+1

of B

k+1

is

at least as great as m

k

. If m

k+1

= m

k

, then a �xed point has been reached,

yielding a solution to the equations (1). Since the entire computation is being

carried out in n-dimensional Euclidean space, we have m

k+1

� n, so termination

is guaranteed.

Since the matrices of the form M

a

(d) comprise an in�nite collection, it is

obviously not possible to compute (B

k+1

; C

k+1

) from (B

k

; C

k

) by a direct enu-

meration of all vectors of the formXM

a

(d). However, B

k+1

can still be computed

by noting that the vectors in B

k+1

are precisely all those row vectors X for which

all matrix equations of the form XM

a

(x)C

k

= 0 are satis�ed identically for all

x. This �nite system of linear equations, with coe�cients in the �eld of rational

functions in x, can be converted into an equivalent �nite set of equations with

constant coe�cients, simply by equating the coe�cients of each power of x on

the left-hand side separately to zero. Solving these scalar equations yields a basis

for B

k+1

.

In practice, we carry out the above procedure in the following way. Before

beginning the iteration process, we preprocess the collection of n � n matrices

fM

a

(x) : a 2 Eg from the representation to convert it into a larger collection

fM

a;i

: a 2 E; i 2 I

a

g of scalar matrices, which yields the same solution space

as the original matrices. This is done by taking each of the matrices M

a

(x)

and �rst eliminating the denominators, by multiplying each entry by the least

common multiple of the denominators of all the entries. The resulting matrix of

polynomials is then \sliced" to obtain a separate matrix of scalar coe�cients for

each power of x. After the preprocessing step, all further calculations are carried

out using scalar arithmetic, rather than arithmetic on rational functions.

The �xed-point iteration is now carried out for the collection fM

a;i

: a 2

E; i 2 I

a

g as follows. The starting matrix B

0

is taken to be the 1 � n matrix

having the starting vector C as its only row. (For the observability part of

the minimization algorithm, the vector D(x) is used instead, and a \slicing"

construction such as that described above for the M

a

(x) is used to convert D(x)

into a list of constant vectors that become the rows of B

0

.) The starting matrix

C

0

has as its columns the vectors of a basis for the null space of B

0

, which is

calculated using Gaussian elimination.

At the kth iteration, we calculate a list of all matrices of the form B

k

M

a;i

,

and \stack" these matrices atop each other, together with B

k

itself, to form a

large matrixM . Gaussian elimination is then used to calculate bases for the null

space of M and its orthogonal complement. These bases become, respectively,

the columns of C

k+1

and rows of B

k+1

. In our actual implementation, we use

two optimizations that improve the running time of this procedure. The �rst is

targeted at reducing the number of rows in M , thereby reducing the amount

of time needed to calculate its null space. For this, we note that most of the

rows of the matrices B

k

M

a;i

tend to be linearly dependent on the rows of B

k

,

and therefore impose no new constraints. So, in constructing the matrix M we

include only those rows X of B

k

M

a;i

for which XC

k

is nonzero. The second

optimization attempts to reduce the amount of redundant work performed in

constructing the matrix M over successive iterations of the algorithm. Rather

than working with all rows of B

k

at each iteration, we maintain at each iteration

a smaller list B

0

k

of rows that are \new," in the sense that they are independent

of rows already treated at earlier iterations. Only the rows in B

0

k

are used in the

construction of M .

Our minimization algorithm can be thought of as essentially a breadth-�rst

search to determine the least subspace of n-dimensional space that contains a

speci�ed starting subspace and is closed under multiplication by the M

a;i

. A

notion of branching factor at the kth iteration can be de�ned as the ratio of

the number of rows of the matrix M to the number of rows in B

0

k

. It is the

number of rows in M that controls the time taken to perform each iteration. In

the typical runs of the algorithm that we have observed, the reachability portion

of the minimization algorithm tends to have a relatively small, roughly constant

branching factor, which leads to a modest and predictable amount of work at

each iteration. In contrast, the observability portion of the algorithm generally

seems to have larger, less predictable branching factors, and produces larger and

denser matrices whose null spaces sometimes take a long time to compute.

5 Test Cases

In this section, we discuss the performance of our implementationon some bench-

mark examples. To date, we have been primarily concerned with removing bugs

from our implementation, improving its performance, and getting an idea of

how much reduction might be a�orded by the minimization algorithm. For this

reason, our benchmark examples have primarily been ones for which we could de-

termine the correct answers by other means, and which had some parameters we

could change to produce instances of di�erent sizes and numbers of components.

5.1 Jai-alai Match

Our primary benchmark example has been a model of jai-alaimatch. In the game

of jai-alai, n players occupy seats numbered 1, 2, : : :, n. The players in seats 1

and 2 enter into a contest whose outcome depends on skill and chance. After

the contest, the players change seats, with the winner of the match taking seat

1, the loser taking seat n, and all the other players shifting up by one seat. The

winner of each contest scores one point, and play continues until some player

has scored k points.

We used a system of PIOAs to model an n-player, k-point jai-alai match

in which all players are equally skilled, so that in each round there is an equal

probability that either of the two players will win. Our PIOA model consists of

one PIOA called the referee, n PIOAs called the players, and n PIOAs called the

scorers, for a total of 2n+ 1 component PIOAs. Players keep track of what seat

they are currently in, so that the number of states of a player PIOA is dependent

on n (speci�cally, n+ 5). Each scorer keeps track of the total number of points

that has been accumulated by a single player, so that the number of states of

a scorer PIOA is dependent on k (speci�cally, 2k + 3). The number of states of

the referee is 5, independent of n and k.

The component PIOAs interact to simulate the jai-alaimatch. At each round,

the players in seats 1 and 2 announce themselves to the referee as \champion"

and \challenger," respectively. The champion and challenger act asynchronously

in this phase. The referee then decides probabilistically whether the outcome

of the contest is an \upset" (challenger wins), or \non-upset" (champion wins),

and announces the result to all the players and scorers. Upon being informed

of the outcome of the contest, the players all change seats in accordance with

the rules, and the scorer associated with the player who has won increments its

score by one. Once this has been done, this scorer either announces that it has

reached the number of points required to win, or else it issues an \ok" to all

the players, signalling that the next round can begin. The PIOA model requires

that each state of each component be assigned a rate. We assigned a rate of 1

to each state from which a locally controlled action was enabled, and a rate of

0 to other states. This was adequate for the runs reported below, in which we

were only interested in the probability of a particular player winning the match.

It would have been possible (by using a di�erent observable) for us to calculate

a real-time performance measure, such as the expected time to complete the

match. In this case, rates other than 1 and 0 could have been used.

We used our implementation to compute the probability that the player who

�rst accumulates k points and wins the match will be the one who occupied seat

1 at the outset. We performed this computation for various combinations of n

and k that produced systems with between 5 and 9 components, and with global

state spaces ranging from 12,005 (= 5 � 7

2

� 7

2

) states to 78,764,805 (= 5 � 7

4

� 9

4

)

states. Figure 1 shows the results of various runs on a 333MHz UltraSparc.

The timing results reported were obtained with the observability part of the

minimization algorithm disabled, which as we have already mentioned, typically

gives the best performance.

Players (n) Points (k) Components States Output Time

2 2 5 12,005 1/2 16 seconds

2 3 5 19,845 1/2 43 seconds

2 4 5 29,645 1/2 126 seconds

2 6 5 55,125 1/2 12 minutes

2 8 5 88,445 1/2 48 minutes

3 2 7 878,080 3/8 9 minutes

4 2 9 78,764,805 5/16 532 minutes

Fig. 1. Jai-alai Analysis Results (observability minimization disabled)

We should note that the results are sensitive to the order in which the com-

ponents are treated. For all the above runs, we applied the referee �rst, then each

of the players, and �nally the scorers. For the 2-player, 2-point case, if we al-

ternate the application of players with scorers, then the minimization algorithm

does not produce as large reductions at the early stages and the analysis requires

over a minute to complete. The decrease in time from the 2-player, 8-point case

and the 3-player, 2-point case seems to be due to the increased possibilities for

reduction when there are more components in the system.

As discussed earlier, our code is capable of producing symbolic expressions

that show the dependence of a performance measure on a parameter. To illustrate

this, we ran the two-player, two-point case and the two-player, three-point case

in symbolic mode, where the probability of an \upset" was left as an unspeci�ed

parameter p. The two-point case takes essentially the same amount of time to

run symbolically, and the expression:

1� 2p+ 3p

2

� 2p

3

was output in 16 seconds of CPU time. For the three-point case, the expression:

1� 3p+ 9p

2

� 16p

3

+ 15p

4

� 6p

5

was output in 46 seconds of CPU time, as opposed to 43 seconds for the non-

symbolic analysis.

Figure 2 uses the 3-player, 2-point case to illustrate the e�ect of compositional

analysis with minimization as each component is treated. On the line with each

component, we have listed the number of (local) states of that component, the

total number of global states for the portion of the system up to and including

that component, the dimension of the representation after applying that com-

ponent but before minimization, and the dimension of the representation after

minimization. The dimensions are reported both in the case that observability

minimization is enabled, and in the case it is disabled.

Observ. on Observ. o�

Component States Global Start Min. Start Min.

Referee 5 5 15 6 15 10

Player 1 8 40 48 34 80 72

Player 2 8 320 272 148 576 354

Player 3 8 2,560 1,184 162 2,832 440

Scorer 1 7 17,920 1,134 193 3,080 520

Scorer 2 7 125,440 1,351 116 3,640 288

Scorer 3 7 878,080 812 59 2,016 80

Fig. 2. Performance of Minimization Algorithm

An advantage of the compositional approach is that memory consumption is

not a limiting factor with respect to the size of the examples that can be run.

For all of the above runs, the size of the heap never exceeded about 120MB.

Since Standard ML of New Jersey requires a heap that is at least three times

the amount of active data, this means that the amount of active data produced

during the runs did not exceed 40MB.

5.2 Alternating Bit Protocol

Besides the jai-alai example discussed above, we have also run our code on a

three-component version of the alternating bit protocol, which has about 500

global states. For this example, it takes only a few seconds to compute the

expected time required, from the time a message is input by the sender, to the

time that message is successfully acknowledged by the receiver.

6 Related Work

In this section, we discuss brie
y some related investigations being pursued

by other researchers. A signi�cant point of di�erence with our work is that

these other projects perform numerical analysis by extracting an underlying

continuous-time Markov chain and solving it numerically, whereas we are pri-

marily interested in exact solutions that avoid the construction of the global

state space. Another point of di�erence involves the fact that our techniques are

most directly applicable to computing transient performance measures, whereas

the computation of steady-state probabilities is usually the central focus of tradi-

tionalMarkovian analysis. However, it is possible to exploit the symbolic capabil-

ities of our methods in order to compute certain kinds of steady-state parameters.

We are currently investigating this approach.

6.1 Generalized Stochastic Petri Nets

Generalized Stochastic Petri Nets (GSPNs) [MBC84,MBC

+

94] are an extension

of Petri Nets to handle probability and timing. Analysis of the model is per-

formed in a classical style, by extracting a continuous time Markov chain and

solving the associated system of linear equations for the steady-state probabil-

ities. For example, the \GreatSPN" tool [CFGR95] can perform reachability

graph generation and qualitative analyses such as deadlock and livelock detec-

tion, as well as Markovian analysis of both steady-state and transient perfor-

mance characteristics.

Tools such as GreatSPN use iterative techniques to obtain numerical solu-

tions to large sparse linear systems. Systems with sizes on the order of a million

variables can be solved in this way. However, as can be seen from Figure 1,

even very simple systems quickly reach a million global states, so compositional

techniques will be essential if this type of analysis is to go much farther. In

general, Petri net-based models, including GSPNs, have traditionally not lent

themselves very well to compositional techniques. One approach to this problem

has been to try to transport, to the GSPN setting, standard notions of equiva-

lence and composition from process algebras [HHMR97]. Another approach has

been to characterize classes of GSPNs for which the underlying Markov chain

has a so-called \product form property" [DS92]. Product form properties per-

mit the state-transition graph of a large system to be decomposed into smaller

component graphs, in such a way that the solution for large graph is determined

in a simple way by the solutions to the components. This permits the compo-

nent systems to be solved separately, and the solutions combined to obtain the

solution for the original system. A di�culty with the product form approach is

that product form properties tend to be destroyed by arbitrary synchronization

and interaction between components of a system. Thus, if a system is to submit

to this type of analysis, it has to have very limited types of interaction between

the components. This condition may be too restrictive, in practice.

6.2 Stochastic Process Algebra

In contrast to Petri nets, process algebras are designed with compositionality

in mind from the start. Stochastic process algebras extend traditional process

algebras by adding probabilistic and timing information. Several researchers have

constructed analysis tools to work with stochastic process algebras. The PEPA

workbench [Hil96], permits systems to be described in a hierarchical fashion.

Quantitative analysis of a model is based on numerical solution of the underlying

Markov chain. However, the process algebraic framework permits the use of

bisimulation-based equivalences to perform state-space reduction [Hil95].

The TIPPtool [HM96,HHK

+

98] is another analysis tool that is based on

stochastic process algebra. A variety of analyses are supported, including steady

state and transient analysis of an underlying continuous-time Markov chain.

These analyses are performed in a global fashion, by constructing the state space

of the Markov chain and then solving numerically the associated linear system.

However, bisimulation-based congruences are exploited to perform state-space

reduction, which increases the size of the models that can be treated. It is stated

in [HHK

+

98] that iterative numerical methods such as Gauss-Seidel on sparse

matrix data structures, permit the solution of Markov chains of up to 100000

states. H. Hermanns (private communication) has indicated that using successive

overrelaxation, a variant iterative technique, current analysis capabilities are

somewhat higher { between a million and ten million states.

7 Conclusion

We are encouraged by the results we have achieved so far with our techniques.

However, when one compares the size of the state space of the examples we

have been able to treat with the size of the state spaces that arise out from

practical examples, one realizes that there is still some distance to go before

practical application of this kind of analysis is routine. The fact that we can

perform symbolic analysis is exciting, because one is likely to be willing to wait

signi�cantly longer to compute a formula that expresses the dependence of a

performance measure on a system parameter than one is to compute just one data

point. We would like to improve the symbolic capability of our implementation,

and to extend it to encompass dependencies on more than one parameter.

The fact that our techniques are time, rather than storage-bound, raises

hopes that the size of the problems that can be treated can still be raised signif-

icantly by speeding up the code. There are a variety of \low-tech" tricks we feel

could be used to squeeze some additional performance out of our algorithms.

Recoding in C++ would probably produce a signi�cant speedup, though the

necessary C++ code would probably be at least double the size of our ML code.

Heuristics for choosing the best order in which to treat components might be

helpful. So far, it seems that a good strategy is to apply \large-state" compo-

nents such as counters later in the analysis rather than earlier. We feel there are

also possibilities of \high-tech" improvements in the algorithms, such as mak-

ing use of deeper properties of the matrices M

a;i

to speed up the minimization

algorithm.

References

[BR84] J. Berstel and C. Reutenauer. Rational Series and Their Languages, vol-

ume 12 of EATCS Monographs on Theoretical Computer Science. Springer-

Verlag, 1984.

[Bro71] W. S. Brown. On Euclid's algorithm and the computation of polynomial

greatest common divisors. Journal of the Association for Computing Ma-

chinery, 18(4):478{504, October 1971.

[CFGR95] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7:

Graphical editor and analyzer for timed and stochastic Petri nets. Perfor-

mance Evaluation, 24(1-2):47{68, November 1995. special issue on perfor-

mance modeling tools.

[DS92] S. Donatelli and M. Sereno. On the product form solution for stochastic

Petri nets. In Proc. of Int. Conf. on Applications and Theory of Petri Nets,

She�eld, UK, 1992.

[HHK

+

98] H. Hermanns, U. Herzog, U. Klehmet, M. Siegle, and V. Mertsiotakis. Com-

positional performance analysis with the TIPPtool. In PERFORMANCE

TOOLS '98, Lecture Notes in Computer Science. Springer-Verlag, 1998. to

appear.

[HHMR97] H. Hermanns, U. Herzog, V. Mersiotakis, and M. Rettelbach. Exploit-

ing stochastic process algebra achievements for generalized stochastic Petri

nets. In Proc. of the 7th Int. Workshop on Petri Nets and Performance

Models, St. Malo, June 1997. IEEE Computer Society Press.

[Hil95] J. Hillston. Compositional Markovian modelling using a process algebra. In

W. Stewart, editor, Proceedings of the Second International Workshop on

Numerical Solution of Markov Chains: Computations with Markov Chains,

Raleigh, North Carolina, January 1995. Kluwer Academic Press.

[Hil96] J. Hillston. A Compositional Approach to Performance Modelling. Cam-

bridge University Press, 1996.

[HM96] H. Hermanns and V. Mertsiotakis. A stochastic process algebra based mod-

elling tool. In M. Merabti, M. Carew, and F. Ball, editors, Performance En-

gineering of Computer and Telecommunications Systems. Springer-Verlag,

1996.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[MBC84] M. Ajmone Marsan, G. Balbo, and G. Conte. A class of generalized stochas-

tic Petri nets for the performance evaluation of multiprocessor systems.

ACM Trans. on Computer Systems, 2:143{172, 1984.

[MBC

+

94] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.

Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons, 1994.

[Sch61a] M. P. Sch�utzenberger. On a special class of recurrent events. Annals

Math. Stat., 32:1201{1213, 1961.

[Sch61b] M. P. Sch�utzenberger. On the de�nition of a family of automata. Informa-

tion and Control, 4:245{270, 1961.

[SS98] E. W. Stark and S. Smolka. Compositional analysis of expected delays in

networks of probabilistic I/O automata. In Proc. 13th Annual Symposium

on Logic in Computer Science, pages 466{477, Indianapolis, IN, June 1998.

IEEE Computer Society Press.

[WSS97] S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of

probabilistic I/O automata. Theoretical Computer Science, 176(1-2):1{38,

1997.

