
Reaching Approximate Agreement in the

Presence of Faults

Danny Dolev

1

Nancy A. Lynch

2

Shlomit S. Pinter

3

Eugene W. Stark

4

William E. Weihl

5

October 2, 1985

Abstract

This paper considers a variant on the Byzantine Generals problem, in which processes

start with arbitrary real values rather than Boolean values or values from some bounded

range, and in which approximate, rather than exact, agreement is the desired goal. Al-

gorithms are presented to reach approximate agreement in asynchronous, as well as syn-

chronous systems. The asynchronous agreement algorithm is an interesting contrast to a

result of Fischer, Lynch, and Paterson, who show that exact agreement is not attainable

in an asynchronous system with as few as one faulty process. The algorithms work by suc-

cessive approximation, with a provable convergence rate that depends on the ratio between

1

Hebrew University, Jerusalem, Israel

2

Massachusetts Institute of Technology, Cambridge, MA. This work was supported in part by the NSF

under Grant No. DCR-8302391, U.S. Army Research O�ce Contract #DAAG29-84-K-0058, and the

Defense Advanced Research Projects Agency (DARPA) #N00014-83-K-0125.

3

Technion, Haifa, Israel

4

State University of New York at Stony Brook, Stony Brook, NY

5

Massachusetts Institute of Technology, Cambridge, MA. This work was supported in part by a graduate

fellowship from the Fannie and John Hertz Foundation, and the Defense Advanced Research Projects

Agency (DARPA) #N00014-83-K-0125.

1

the number of faulty processes and the total number of processes. Lower bounds on the

convergence rate for algorithms of this form are proven, and the algorithms presented are

shown to be optimal.

1 Introduction

In designing fault-tolerant distributed systems, one often encounters questions of agree-

ment among processes. In the Byzantine Generals problem [PSL 80, LSP 82], the objective

is for nonfaulty processes to agree on a value, in spite of the presence of a small number

of \Byzantine" types of faults | completely arbitrary, even possibly malicious, behavior.

Several variations on the problem can be considered | the model can be synchronous or

asynchronous, and either exact or approximate agreement can be demanded. In this paper,

we consider a variant on the traditional Byzantine Generals problem, in which processes

start with arbitrary real values, and where approximate, rather than exact, agreement is the

desired goal. Approximate agreement can be used, for example, for clock synchronization

and for stabilization of input from sensors.

We assume a model in which processes can send messages containing arbitrary real

values, and can store arbitrary real values as well. We assume that each process starts with

an arbitrary real value. For any preassigned � > 0 (as small as desired), an approximate

agreement algorithm must satisfy the following two conditions:

� Agreement: All nonfaulty processes eventually halt with output values that are within

� of each other.

� Validity: The value output by each nonfaulty process must be in the range of initial

values of the nonfaulty processes.

Thus, in particular, if all nonfaulty processes should happen to start with the same

initial value, the �nal values are all required to be the same as the common initial value.

This is consistent with the usual requirements for Byzantine agreement algorithms. How-

ever, should the nonfaulty processes start with di�erent values, we do not require that the

nonfaulty processes agree on a unique �nal value.

2

We consider both synchronous and asynchronous versions of the problem. Systems

in which there is a �nite bounded delay on the operations of the processes and on their

intercommunication are said to be synchronous. In such systems, unannounced process

deaths, as well as long delays, are considered to be faults. For synchronous systems, we give

a simple and rather e�cient algorithm for achieving approximate agreement. This algorithm

works by successive approximation, with a provable convergence rate that depends on the

ratio between the number of faulty processes and the total number of processes. The

algorithm is guaranteed to converge when the total number of processes is more than three

times the number of possible faulty processes. Termination is achieved using a technique

that ensures that all nonfaulty processes halt, but allows di�erent processes to terminate

at di�erent times.

For asynchronous systems, in which a very slow process cannot be distinguished from

a dead process, no exact agreement can be achieved, even if no malicious failures occur

[FLP 83, DDS 83]. An interesting contrast to the results in [FLP 83, DDS 83] is our second

algorithm, which enables processes in an asynchronous system to get as close to agreement

as one chooses. Our algorithm for the asynchronous case also works by successive approx-

imation. In this case, however, the total number of processes required by the algorithm is

more than �ve times the number of possible faulty processes. As in the synchronous case,

we achieve termination using a technique that ensures that all nonfaulty processes halt, but

permits di�erent processes to terminate at di�erent times.

Our algorithms to obtain approximate agreement are of a very simple form. Namely, at

each round until termination is reached, each process sends its latest value to all processes

(including itself). On receipt of a collection V of values, the process computes a certain

function f(V) as its next value. The function f is a kind of averaging function. Here we

use functions that are appropriate for handling t faulty processes. We will show that these

functions have particularly nice approximation behavior. In particular, we will show that,

for algorithms of a particular form, no approximation function can provide uniformly faster

convergence than the functions used in this paper. An earlier paper [DLPSW 83] presented

similar algorithms, but used approximation functions that provided slower convergence than

achieved by the functions used in this paper.

3

The remainder of this paper is organized as follows: In Section 2, we prove some combina-

torial properties of the approximation functions upon which our algorithms depend. Then,

in Section 3, we introduce the synchronous model and present the synchronous approximate

agreement algorithm, and in Section 4, we present the asynchronous model and algorithm.

Next, in Section 5, we present lower bounds on the convergence rate for algorithms of the

form presented in sections 3 and 4, and show that the approximation functions used in our

algorithms are optimal. In Section 6, we discuss the resilience properties of our algorithms.

Finally, in Section 7, we conclude with a short summary and some open questions.

2 Properties of the Approximation Functions

In this section, we will state and prove the relevant properties of the approximation

functions. First, we require some preliminary de�nitions and properties of multisets.

2.1 Preliminary De�nitions

Let N be the natural numbers, including 0, and let R be the real numbers. We view a

�nite multiset U of reals as a function U : R! N that is nonzero on at most �nitely many

r 2 R. Intuitively, the function U assigns a �nite multiplicity to each value r 2 R. The

cardinality of a multiset U is given by

P

r2R

U(r), and is denoted by jU j. We say that a

multiset is empty if its cardinality is zero; otherwise it is nonempty. The di�erence U � V

of multisets U and V is the multiset W de�ned by

W (r) =

8

>

<

>

:

U(r)� V (r) if U(r)� V (r) � 0

0 otherwise:

The intersection U \ V of multisets U and V is the multiset W de�ned by W (r) =

min(U(r); V (r)).

In the sequel, the term \multiset" will always refer to �nite multisets of real numbers

as above. If g is a function on multisets, then g

k

will denote the k-fold iteration of g; thus

g

1

= g, g

2

= g � g, etc.

The minimum min(U) of a nonempty multiset U is de�ned by

min(U) = minfr 2 R : U(r) 6= 0g:

4

The maximum max(U) is de�ned similarly. If U is nonempty, let �(U) (the range of U) be

the interval [min(U);max(U)], and let �(U) (the diameter of U) be max(U)�min(U). The

mean mean(U) of a nonempty multiset U is de�ned by

mean(U) =

X

r2R

rU(r)=jU j:

If U is a nonempty multiset, we de�ne the multiset s(U) (intuitively, the multiset ob-

tained by removing one occurrence of the smallest value in U) to be the multiset W de�ned

by

W (r) =

8

>

<

>

:

U(r)� 1 if r = min(U);

U(r) otherwise:

The multiset l(U) (remove one occurrence of the largest value in U) is de�ned similarly. If

jU j � 2, then de�ne reduce(U) = s(l(U)), the result of removing the largest and smallest

elements of U .

The �rst lemma shows that the number of common elements in two nonempty multisets

is reduced by at most 1 when the smallest (or the largest) element is removed from each.

Lemma 1 Suppose that V and W are nonempty multisets. Then

1. jV \W j � js(V) \ s(W)j � 1.

2. jV \W j � jl(V) \ l(W)j � 1.

Proof { We prove the �rst inequality; the argument for the second is symmetric. If V

and W have the same minimum, then the same element is removed from each, and hence

at most one element is removed from their intersection. If the minima of V and W are not

the same, then either the minimum of V is not in W , or the minimum of W is not in V . In

either case, at most one element is removed from the intersection.

The next lemma extends the results of the previous lemma to removing the j largest

and j smallest elements.

Lemma 2 Suppose that j is a nonnegative integer and that V and W are multisets such

that jV j � 2j and jW j � 2j . Then

jV \W j � jreduce

j

(V) \ reduce

j

(W)j � 2j:

5

Proof { Follows from repeated application of Lemma 1.

The next lemma is fundamental to the correctness of the algorithms. It states that if

V and U are multisets such that V contains at most j values not in U , then every value in

reduce

j

(V) is in the range of U . For example, if the multiset of values held by nonfaulty

processes at some point in the algorithm is U , and the multiset of values received by some

process is V , then at most t of the values in V are not in U , where t is the maximum number

of faulty processes. The lemma then states that reduce

t

(V) is a multiset whose range is

contained in the range of the values of the nonfaulty processes. This property is essential

in showing that the validity condition is satis�ed.

Lemma 3 Suppose that j is a nonnegative integer and that U and V are nonempty multisets

such that jV � U j � j and jV j > 2j . Then �(reduce

j

(V)) � �(U).

Proof { Suppose �(reduce

j

(V)) 6� �(U). Then either min(reduce

j

(V)) < min(U) or

max(reduce

j

(V)) > max(U). If min(reduce

j

(V)) < min(U), then

P

r<min(U)

V (r) � j + 1.

Hence, jV � U j � j + 1, which contradicts a hypothesis. The case max(reduce

j

(V)) >

max(U) is symmetric.

2.2 The Approximation Functions

Suppose U is a nonempty multiset. Let m = jU j and let u

0

� u

1

� . . . � u

m�1

be the

elements of U in nondecreasing order. If k > 0 then de�ne select

k

(U) to be the multiset

consisting of the elements u

0

; u

k

; u

2k

; . . ., and u

jk

, where j = b(m�1)=kc. Thus, select

k

(U)

chooses the smallest element of U and every kth element thereafter.

An important role will be played by the constants

c(m; k) = b(m� 1)=kc+ 1;

where c(m; k) is the number of elements in select

k

(U) when U hasm elements. The constant

c(n�2t; t) appears as the convergence factor for the synchronous protocol, and the constant

c(n� 3t; 2t) as the convergence factor for the asynchronous protocol.

In this paper we will use approximation functions drawn from a class of functions

parametrized by: (1) the number t of faulty processes, and (2) a constant k, the choice

6

of which depends on t and on whether the algorithm is synchronous or asynchronous. For

k > 0 and t � 0 de�ne the function f

k;t

by

f

k;t

(V) = mean(select

k

(reduce

t

(V)));

for all multisets V with jV j > 2t. The approximation function for the synchronous protocol

with no more than t faulty processes is f

t;t

. The approximation function for the asyn-

chronous protocol with no more than t faulty processes is f

2t;t

. We will show below why

these functions are appropriate.

The next two lemmas describe properties of the approximation functions. Lemma 4 is

used in verifying the validity condition.

Lemma 4 Suppose k > 0 and t � 0 are integers. Suppose that U and V are nonempty

multisets such that jV � U j � t and jV j > 2t. Then f

k;t

(V) 2 �(U).

Proof { Follows easily from Lemma 3 (with j = t).

Lemma 5 will be applied to determine the rate of convergence of the approximation

rounds. The multisets V and W will be the multisets of values received by two nonfaulty

processes in a given round, and U will be the multiset of values held by nonfaulty processes

at the beginning of that round. Nonfaulty processes use the appropriate approximation

function to choose their values for the next round; the lemma tells us how quickly those

values converge.

Lemma 5 Suppose V , W , and U are multisets, and k > 0, t � 0, and m > 2t are integers,

with jV j = jW j = m, jV � U j � t, jW � U j � t, and jW � V j = jV �W j � k. Then

jf

k;t

(V)� f

k;t

(W)j � �(U)=c(m� 2t; k):

Proof { Let M = reduce

t

(V) and N = reduce

t

(W). Since V and W each contain exactly

m elements, M and N each contain exactly m � 2t elements, and hence select

k

(M) and

select

k

(N) each contain exactly c = c(m� 2t; k) elements. Let m

0

� m

1

� . . . � m

c�1

be

the elements of select

k

(M), and let n

0

� n

1

� . . . � n

c�1

be the elements of select

k

(N).

Notice that there are at least ki+ 1 elements in M that are less than or equal to m

i

, and

at most ki elements in M that are strictly less than m

i

; similarly for N .

7

We begin by showing that max(m

i

; n

i

) � min(m

i+1

; n

i+1

) for 0 � i � c � 2. It su�ces

to show that m

i

� n

i+1

; a symmetric argument demonstrates that n

i

� m

i+1

.

We proceed by contradiction: Suppose that m

i

> n

i+1

. As noted above, there are at

least k(i + 1) + 1 elements in N less than or equal to n

i+1

. By our supposition, these

elements are strictly less than m

i

. However, there are at most ki elements in M strictly less

than m

i

. Therefore, there are at least k(i+1)+1�ki (= k+1) elements in N that are not

in M ; thus, jN �M j � k+ 1. Now by hypothesis, jW � V j � k, so jW \V j � m� k. Then

Lemma 2 shows jN \M j � m� k� 2t, and hence jN �M j � (m� 2t)� (m� k� 2t) = k.

This is a contradiction, and we conclude that m

i

� n

i+1

.

Now we will use the inequality shown above to obtain the desired result. Using the

notation de�ned above,

jf

k;t

(V)� f

k;t

(W)j = jmean(select

k

(M))�mean(select

k

(N))j

= j(

c�1

X

i=0

m

i

)� (

c�1

X

i=0

n

i

)j=c

= j

c�1

X

i=0

(m

i

� n

i

)j=c

�

c�1

X

i=0

jm

i

� n

i

j=c (by the triangle inequality)

=

c�1

X

i=0

(max(m

i

; n

i

)�min(m

i

; n

i

))=c:

By the inequality demonstrated above, for 0 � i � c � 2, (max(m

i

; n

i

) � min(m

i

; n

i

)) �

(min(m

i+1

; n

i+1

)�min(m

i

; n

i

)), so we get

jf

k;t

(V)� f

k;t

(W)j � [max(m

c�1

; n

c�1

)�min(m

c�1

; n

c�1

)]=c

+

c�2

X

i=0

(min(m

i+1

; n

i+1

)�min(m

i

; n

i

))=c:

Collecting terms then shows that

jf

k;t

(V)� f

k;t

(W)j � (max(m

c�1

; n

c�1

)�min(m

0

; n

0

))=c:

Now, �(M) � �(U) and �(N) � �(U) by Lemma 3 (with j = t), so max(m

c�1

; n

c�1

) �

max(U) and min(m

0

; n

0

) � min(U). Hence

jf

k;t

(V)� f

k;t

(W)j � (max(U)�min(U))=c

8

= �(U)=c;

as desired.

3 The Synchronous Problem

A synchronous approximation algorithm P is a system of n processes, n � 1. Each

process p has a set of states, including a subset of states called initial states and a subset

called halting states. There is a value mapping which assigns a real number as the value

of each state. For each real number r, there is exactly one initial state with value r. Each

process acts deterministically according to a transition function and a message generation

function. The transition function takes a non-halting process state and a vector of messages

received from all processes (one message per process) and produces a new process state. The

message generation function takes a non-halting state and produces a vector of messages to

be sent to all processes (one per process).

We assume that the system acts synchronously, using a reliable communication medium.

Each process is able to send messages to all processes (including itself), and the sender of

each message is identi�able by the receiver.

A con�guration consists of a state for each process. An initial con�guration consists

of an initial state for each process. Let T be any subset of the processes. A sequence

of con�gurations (called rounds), C

0

; C

1

; C

2

; . . . is a T -computation provided there exist

messages sent by each process at each round such that: (a) C

0

is an initial con�guration;

(b) for every i, and every p 2 T , the messages sent out by p after C

i

are exactly those

speci�ed by p's message generation function, applied to p's state in C

i

; and (c) for every

i, and every p 2 T , p's state in C

i+1

is exactly the one speci�ed by p's transition function

applied to p's state in C

i

and the messages sent to p after C

i

. In a T -computation, processes

in T are nonfaulty, while processes not in T may be faulty.

For the rest of the paper, assume a �xed small value �, a �xed number of processes n,

and a �xed maximum number of faulty processes t.

A synchronous approximation algorithm is said to be t-correct provided that for every

subset T of processes with jT j � n � t, and every T -computation, the following is true:

9

Every p 2 T eventually enters a halting state, and the following two conditions hold for the

values of those halting states:

� Agreement: If two processes in T enter halting states with values r and s, respectively,

then jr � sj � �.

� Validity: If a process in T enters a halting state with value r, then there exist processes

in T having x and y as initial values, such that x � r � y.

We will prove the following theorem.

Theorem 1 If n � 3t+1, then there exists a t-correct synchronous approximation algorithm

with n processes.

Note that the following strategy would su�ce to prove Theorem 1. The processes could

run n executions of a general (unlimited value set) Byzantine Generals algorithm such as

the one in [DS 82], in order to obtain common estimates for the initial values of all the

processes. After this algorithm completes, all processes in T will have the same multiset,

V , of values for all the processes. Then each process halts with value f(V), where f is a

predetermined averaging function that is the same for all processes. This algorithm actually

achieves exact real-valued agreement, with the required validity condition. However, the

solution presented below is simpler and more elegant, and moreover extends directly to

the asynchronous case, for which exact agreement is impossible. The algorithm has two

additional advantages over using a Byzantine Generals algorithm: it is more resilient than

typical Byzantine Generals algorithms, and it can, in some cases, terminate in fewer than

t + 1 rounds.

We now present our synchronous approximation algorithm, S. First, we describe a non-

terminating algorithm, S

0

, and then we discuss how termination is achieved. We assume

that n � 3t + 1.

Synchronous Approximation Algorithm S

0

:

At each round, each nonfaulty process p performs the following steps:

1. Process p broadcasts its current value to all processes, including itself.

10

2. Process p collects all the values sent to it at that round into a multiset V . If p does not

receive exactly one correct value from some particular other process (which means,

in the synchronous model, that the other process is faulty), then p simply picks some

arbitrary default value to represent that process in the multiset. The multiset V will

therefore always contain exactly n values.

3. Process p applies the function f

t;t

to the multiset V to obtain its new value.

The following result states how the diameter and range of the nonfaulty processes' values

are a�ected by each round of algorithm S

0

.

Lemma 6 Suppose n; t > 0 are such that n � 3t + 1. Let T be a set of processes, with

jT j � n� t. Let h be a positive integer. Let U and U

0

be the multisets of values of processes

in T , immediately before and after round h, respectively, in a particular T -computation of

S

0

. Then

1. �(U

0

) � �(U)=c(n� 2t; t).

2. �(U

0

) � �(U).

Proof { Let p and q be arbitrary processes in T . Let V and W be the multisets of values

(including default values) received by p and q, respectively, at round h. Then jV j = jW j = n.

Since there are at most t faulty processes, jV�U j � t and jW�U j � t. Moreover, since V and

W contain identical entries for all the processes in T , we know that jV �W j = jW �V j � t.

1. The multisets V , W , and U satisfy the hypotheses of Lemma 5 (with m = n and

k = t). Thus,

jf

t;t

(V)� f

t;t

(W)j � �(U)=c(n� 2t; t):

2. The multisets V and U satisfy the hypotheses of Lemma 4. Thus f

t;t

(V) 2 �(U).

Since p and q were chosen arbitrarily, the result follows.

Part 1 of Lemma 6 shows that, at each round, the diameter of the multiset of values

held by nonfaulty processes decreases by a factor of c(n� 2t; t), which is at least 2 because

11

n � 3t + 1. Thus, the diameter of the multiset of values held by nonfaulty processes

eventually decreases to � or less. In addition, repeated application of part 2 of Lemma 6

shows that, at each round h � 1, the values held by nonfaulty processes immediately before

round h are all in the range of the initial values of nonfaulty processes.

It is now easy to see why the function f

t;t

is appropriate for the synchronous algorithm.

Since a correct process can receive at most t values in a round from faulty processes, t-fold

application of reduce is su�cient to ensure that extreme values from faulty processes are

discarded. Thus, the second subscript of f is t. Also, if p and q are correct processes that

receive multisets V and W , respectively, in a round, then t is the maximum number of

values that can be in V �W . Application of select

t

to the reduced multisets is therefore

su�cient to obtain convergence, and the �rst subscript of f is also t.

Algorithm S

0

is not a correct synchronous approximation algorithm, however, for as

stated, it never terminates. We modify S

0

to obtain a terminating algorithm, S , as follows.

At the �rst round, each nonfaulty process uses the range of all the values it has received

at that round to compute a round number at which it is sure that the values of any two

nonfaulty processes will be at most � apart. Each process can do this because it knows

the value of �, the guaranteed rate of convergence and furthermore, it knows that the

range of values it receives on the �rst round includes the initial values of all nonfaulty

processes. The total number of rounds that must be executed (including the �rst round) is

given by dlog

c

(�(V)=�)e, where V is the multiset of values received in the �rst round, and

c = c(n� 2t; t).

In general, di�erent processes might compute di�erent round numbers. Any process that

reaches its computed round simply halts, and sends its value out with a special \halting" tag.

When any process, say p, receives a value with a halting tag, it knows to use the enclosed

value not only for the designated round, but also for all future rounds (until p itself decides

to halt, based on p's own computed round number). Although nonfaulty processes might

compute di�erent round numbers, it is clear that the smallest such estimate is correct.

Thus, at the time the �rst nonfaulty process halts, the range is already su�ciently small.

At subsequent rounds, the range of values of nonfaulty processes is never increased, although

we can no longer guarantee that it decreases. The following lemma makes these ideas more

12

precise.

Lemma 7 Assume that n � 3t+1. Let T be a set of processes, with jT j � n� t. Let h be a

positive integer. Let U and U

0

be the multisets of values of processes in T , immediately before

and after round h, respectively, in a particular T -computation of S . Then �(U

0

) � �(U).

Proof { Let p be an arbitrary process in T . Let v and v

0

be the values held by p

immediately before and after round h, respectively. It su�ces, since p is arbitrary, to show

that v

0

2 �(U). If p has terminated prior to the start of round h, then v

0

= v 2 �(U). If p

has not halted prior to the start of round h, then let V be the multiset of values received

by p in round h. Then V and U satisfy the hypotheses of Lemma 4, and since v

0

= f

t;t

(V),

it follows that v

0

2 �(U).

Algorithm S is summarized in Figure 1. To show that S is a correct synchronous ap-

proximation algorithm, we must show that all processes terminate, and that the agreement

and validity conditions are satis�ed. It is clear that all processes terminate. Consider the

agreement property. At the �rst round at which some nonfaulty process halts, it is already

the case that all nonfaulty processes' values are within � of each other. By Lemma 7, this

diameter never increases at subsequent rounds, so the �nal values of all the nonfaulty pro-

cesses are also within � of each other. The validity property also follows from repeated

application of Lemma 7. This completes the proof of Theorem 1.

As a �nal note, observe that algorithm S can be modi�ed so that a process need not

always wait for its computed round to arrive before halting: it can halt after it receives

halting tags from at least t+ 1 other processes.

4 The Asynchronous Problem

In this section, we reformulate the problem in an asynchronous model adapted from the

one in [FLP 83]. In an asynchronous approximation algorithm, we assume that processes

have states as before, but now the operation of the processes is described by a transition

function that in one step tries to receive a message, gets back either \null" or an actual

message, and based on the message, changes state and sends out a �nite number of other

13

Figure 1: Synchronous Approximation Algorithm S

Round 1 (First Approximation Round):

Input v;

V SynchExchange(v);

v f

t;t

(V);

H dlog

c

(�(V)=�)e; where c = c(n� 2t; t):

Round h (2 � h � H) (Approximation Rounds):

V SynchExchange(v);

v f

t;t

(V):

Round H + 1 (Termination Round):

Broadcast(hv;haltedi);

Output v:

Subroutine SynchExchange(v):

Broadcast(v)

Collect n responses:

� Fill in values for halted processes.

� Fill in default values, if necessary.

Return the multiset of responses.

14

messages. Nonfaulty processes always follow the algorithm. Faulty processes, on the other

hand, are constrained so that their steps at least follow the standard form | in each step,

they try to receive a message as do nonfaulty processes. However, they can change state

arbitrarily (not necessarily according to the given algorithm), and can send out any �nite

set of messages (not necessarily the ones speci�ed by the algorithm). A T -computation of

an asynchronous approximation algorithm is one in which the processes in T always follow

the algorithm, all processes (faulty and nonfaulty) continue to take steps until they reach

a halting state, and any process that fails to enter a halting state eventually receives all

messages sent to it.

An asynchronous approximation algorithm is said to be t-correct provided for every

subset T of processes with jT j � n � t, and every T -computation, every process in T

eventually halts, and the same agreement and validity conditions hold as for the synchronous

case.

It seems simplest here to insist on the standard form being followed by all processes.

The requirement that faulty processes keep taking steps until they enter halting states is

not a restriction, since they are free to enter halting states at any time they wish. Similarly,

the requirement that faulty processes continue trying to receive messages is not a restric-

tion, since they are free to do whatever they like with the messages received. Finally, the

requirement that faulty processes only send �nitely many messages at each step is needed

so that faulty processes are unable to
ood the message system, preventing messages from

other processes from getting through.

We assume that processes take steps at completely arbitrary rates, so that there is

no way (in �nite time) to distinguish a faulty process from one that is simply slow in

responding. Also, we assume that the message system takes arbitrary lengths of time to

deliver messages, and delivers them in arbitrary order.

We will prove the following theorem:

Theorem 2 If n � 5t + 1, then there exists a t-correct asynchronous approximation algo-

rithm with n processes.

We now describe the asynchronous approximation algorithm. As in the synchronous

case, �rst we describe a nonterminating algorithm, A

0

, in which processes compute better

15

and better approximations, and we then modify A

0

to produce a terminating algorithm A.

Assume that n � 5t+ 1.

Asynchronous Approximation Algorithm A

0

At round h, each nonfaulty process p performs the following steps:

1. Process p labels its current value with the current round number h, and then broad-

casts this labeled value to all processes, including itself.

2. Process p waits to receive exactly n� t round h values, and collects these values into

a multiset V . Since there can be at most t faulty processes, process p will eventually

receive at least n � t round h values. Note that, in contrast to the synchronous case,

process p does not choose any default values.

3. Process p applies the function f

2t;t

to the multiset V to obtain its new value.

In analogy with Lemma 6, we have the following result, which states the convergence

properties of the above algorithm.

Lemma 8 Suppose n; t > 0 are such that n � 5t + 1. Let T be a set of processes, with

jT j � n� t. Let h be a positive integer. Let U and U

0

be the multisets of values of processes

in T , immediately before and after round h, respectively, in a particular T -computation of

A

0

. Then

1. �(U

0

) � �(U)=c(n� 3t; 2t).

2. �(U

0

) � �(U).

Proof { Let p and q be arbitrary processes in T . Let V and W be the multisets of values

received by p and q, respectively, at round h. Then jV j = jW j = n � t. Since there are

at most t faulty processes, jV � U j � t and jW � U j � t. Moreover, since V and W both

contain identical entries for all the processes in T from which both p and q heard, we know

that jV \W j � n� 3t. Hence jV �W j = jW � V j = jV j � jV \W j � 2t.

1. The multisets V , W , and U satisfy the hypotheses of Lemma 5 (with m = n� t and

k = 2t). Thus,

jf

2t;t

(V)� f

2t;t

(W)j � �(U)=c(n� 3t; 2t):

16

2. The multisets V and U satisfy the hypotheses of Lemma 4. Thus f

2t;t

(V) 2 �(U).

Since p and q were chosen arbitrarily, the result follows.

Part 1 of Lemma 8 shows that, at each round, the diameter of the multiset of values

of nonfaulty processes decreases by a factor of c(n � 3t; 2t), which is at least 2 because

n � 5t + 1. Thus, the diameter of the multiset of values held by nonfaulty processes

eventually decreases to � or less. In addition, repeated application of part 2 of Lemma 8

shows that, at each round h � 1, the values held by nonfaulty processes immediately before

round h are all in the range of the initial values of nonfaulty processes.

We can now see why f

2t;t

is the appropriate approximation function for the asynchronous

algorithm. The second subscript is t because, as in the synchronous case, that is the

maximum number of values a correct process can receive in a round that are not values of

correct processes. The �rst subscript is 2t because if the correct processes p and q receive

multisets V and W , respectively, in a round, then 2t is the maximum number of values that

can be in V �W (t faulty values, plus t nonfaulty values received by p but not by q).

The only remaining problem is termination. We cannot use the same technique that

we used in the synchronous algorithm, because a process cannot wait until it hears from

all other processes, and thus cannot obtain an estimate of the range of the initial values

of the nonfaulty processes. We solve this problem by adding an initialization round at the

beginning of the algorithm. In this initialization round (round 0), each nonfaulty process p

performs the following steps:

Initialization Round for Asynchronous Approximation Algorithm A:

1. Process p labels its initial value with the round number 0, and then broadcasts this

labeled value to all processes, including itself.

2. Process p waits to receive exactly n� t round 0 values, and collects these values into

a multiset V

p

.

3. Process p chooses an arbitrary element of �(reduce

2t

(V

p

)) (say mean(reduce

2t

(V

p

)))

as its initial value for use in round 1. Let x

p

be this chosen value.

Suppose that p and q are arbitrary nonfaulty processes. Then since jV

p

j > 4t and

jV

p

� V

q

j � 2t, it follows that V

p

and V

q

satisfy the hypotheses for the multisets V and U ,

17

respectively, in Lemma 3 (with j = 2t). An application of this result therefore shows that,

for any nonfaulty processes p and q, it is the case that x

p

2 �(V

q

). That is, the value x

p

computed by process p as the result of the initialization round is contained in the range of

all values received by process q in the initialization round. Since each nonfaulty process q

knows: (1) that its range �(V

q

) contains all the round 1 values x

p

for nonfaulty processes

p; (2) the value of �; and (3) the guaranteed rate of convergence, it can compute, before

the beginning of round 1, a round number at which it is sure that the values of any two

nonfaulty processes will be at most � apart. The total number of rounds that must be

executed by a process, not including the initialization round, is dlog

c

(�(V)=�)e, where V is

the multiset received in the initialization round, and c = c(n� 3t; 2t).

As in the synchronous case, di�erent processes will calculate di�erent round numbers at

which they would like to halt. The same modi�cation, of sending a value out with a special

halting tag, works here as well. We obtain a lemma analogous to Lemma 7:

Lemma 9 Assume that n � 5t+1. Let T be a set of processes, with jT j � n� t. Let h be a

positive integer. Let U and U

0

be the multisets of values of processes in T , immediately before

and after round h, respectively, in a particular T -computation of A. Then �(U

0

) � �(U).

Algorithm A is summarized in Figure 2. The remainder of the proof of Theorem 2 is

analogous to that of Theorem 1.

5 Lower Bound Results

In this section, we assume that algorithms are of a standard form in which at each

round, an old approximation is exchanged with other processes, and a new approximation

is computed from the multiset of values received, by the application of an approximation

function f . We assume that f is cautious, as de�ned below. (Our algorithms all �t this

pattern.) The results show that, under these assumptions, the function f

t;t

gives the best

possible single-round convergence factor for a synchronous algorithm for n � 3t+1, and the

function f

2t;t

gives the best possible single-round convergence factor for an asynchronous

algorithm for n � 5t+ 1.

18

Figure 2: Asynchronous Approximation Algorithm A

Round 0 (Initialization Round):

Input v;

V AsynchExchange(v; 0);

v mean(reduce

2t

(V));

H dlog

c

(�(V)=�)e; where c = c(n� 3t; 2t).

Round h (1 � h � H) (Approximation Rounds):

V AsynchExchange(v; h);

v f

2t;t

(V).

Round H + 1 (Termination Round):

Broadcast(hv;haltedi);

Output v.

Subroutine AsynchExchange(v; h):

Broadcast(hv; hi)

Collect n � t round h responses:

� Fill in values for halted processes.

� Do not �ll in default values.

Return the multiset of responses.

19

We should note that the results of this section merely show the existence, given a

particular choice of approximation functions, of multisets that demonstrate the worst-case

behavior of those approximation functions. These multisets satisfy cardinality constraints

such that they could be the multisets appearing in some round of an actual execution of the

algorithm, for example the �rst round. However, the multisets of values appearing in any

round of an execution of the algorithm in general depend upon the behavior of the faulty

processes at all preceding rounds. We do not necessarily know that the faulty processes can

conspire to produce worst-case behavior at each round of the algorithm. The results of this

section therefore do not preclude the existence of approximation functions whose per-round

convergence factor is not constant over the course of the algorithm, but rather becomes

more favorable as the algorithm progresses.

In [DLPSW 83], an earlier version of this work, we used di�erent approximation functions

in our algorithms. The discovery of the lower bounds in this section suggested that those

functions did not give optimal rates of convergence, and led us to search for the improved

approximation functions that appear in this paper.

In the remainder of this section, let n and t be �xed.

We say that an approximation function f , which takes a multiset M of real numbers to a

real number f(M), is cautious if f(M) 2 �(U) for all multisets U such that jM�U j � t. The

cautious requirement seems reasonable for any approximation function that will tolerate up

to t faults: regardless of the values received from the faulty processes, a cautious function

will produce a value in the range of the values held by the nonfaulty processes. It is easy

to see that f

k;t

is cautious for all k > 0.

5.1 The Synchronous Problem

We will show the following theorem:

Theorem 3 Suppose n; t > 0 are such that n � 3t+ 1. Suppose that f and g are cautious

20

approximation functions. Then there exist multisets V , W , and U such that:

jV j = jW j = n;

jU j = n� t;

jV � U j = jW � U j = t; and

jf(V)� g(W)j � �(U)=c(n� 2t; t):

The implications of this result for the synchronous agreement algorithm are the follow-

ing: Suppose we consider algorithms of a standard form, in which at each round, a process

exchanges its current approximation with all other processes, and then applies a cautious

approximation function to the multiset of values it receives to determine its new approxima-

tion. Theorem 3 then implies that there exist multisets V , W , and U , such that if correct

processes p and q (using approximation functions f and g, respectively) receive multisets of

values V and W , respectively, in some round of execution, and U is the multiset of values

held by correct processes at the start of that round, then the new approximations held by

p and q at the end of the round can be no closer than �(U)=c(n� 2t; t). Thus this result

yields a fundamental limitation on the rate of convergence of algorithms of the standard

form. The lower bound given by this result also matches the upper bound provided by the

function f

t;t

.

The proof of Theorem 3 requires the following lemma, which asserts the existence of a

chain of multisets that spans from a multiset M

0

upon which every cautious approximation

function must yield 0, to a multiset M

c

upon which every cautious approximation function

must yield 1, where c = c(n� 2t; t). The chain is de�ned so that:

1. M

0

has the value 0 with multiplicity n � t and the value 1 with multiplicity t, and

2. For 0 � i � c� 1, the multiset M

i+1

is obtained from M

i

by changing t of the values

from 0 to 1.

Lemma 10 Suppose n; t > 0 are such that n � 3t + 1. Let c = c(n � 2t; t). Then there

21

exist multisets M

0

;M

1

; . . . ;M

c

, and U

1

; U

2

; . . . ; U

c

such that:

jM

i

j = n for 0 � i � c;

jU

i

j = n � t for 1 � i � c;

jM

i

� U

i+1

j = jM

i+1

� U

i+1

j = t for 0 � i � c� 1;

�(U

i

) = 1 for 1 � i � c;

and such that f(M

0

) = 0 and f(M

c

) = 1 whenever f is a cautious approximation function.

Proof { De�ne M

i

to have the value 0 with multiplicity n � (i + 1)t and the value 1

with multiplicity (i+ 1)t. De�ne U

i

to have the value 0 with multiplicity n � (i+ 1)t and

the value 1 with multiplicity it. The cardinality and diameter constraints on these sets are

easily checked. Suppose f is cautious. Then since M

0

has the value 0 with multiplicity n� t

(> t) and the value 1 with multiplicity t (� t), it follows that f(M

0

) = 0. Also, M

c

has

the value 0 with multiplicity n � (c+ 1)t and the value 1 with multiplicity (c+ 1)t. From

the de�nition of c, we know that n � 3t < (c� 1)t + 1 � n � 2t, so (c+ 1)t � n � t, and

n� (c+ 1)t � t. It follows that f(M

c

) = 1.

We can now present the proof of Theorem 3:

Proof { For 0 � i � c (= c(n� 2t; t)), let the approximation function h

i

be f if i is even,

and g if i is odd. By Lemma 10, there exists a chain M

0

;M

1

; . . . ;M

c

, and U

1

; U

2

; . . . ; U

c

such that:

jM

i

j = n for 0 � i � c;

jU

i

j = n � t for 1 � i � c;

jM

i

� U

i+1

j = jM

i+1

� U

i+1

j = t for 0 � i � c� 1;

�(U

i

) = 1 for 1 � i � c;

and such that h

0

(M

0

) = 0 and h

c

(M

c

) = 1. Suppose, to obtain a contradiction, that

jh

i+1

(M

i+1

)� h

i

(M

i

)j < 1=c for 0 � i � c� 1. Then

1 = jh

c

(M

c

)� h

0

(M

0

)j

= jh

c

(M

c

)� h

c�1

(M

c�1

) + h

c�1

(M

c�1

)� h

c�2

(M

c�2

) + . . . + h

1

(M

1

)� h

0

(M

0

)j

� jh

c

(M

c

)� h

c�1

(M

c�1

)j+ jh

c�1

(M

c�1

)� h

c�2

(M

c�2

)j+ . . . + jh

1

(M

1

)� h

0

(M

0

)j

< c=c

= 1:

22

This is a contradiction, and we conclude that jh

i+1

(M

i+1

)� h

i

(M

i

)j � 1=c for some i with

1 � i � c� 1. If i is even, then h

i

= f and h

i+1

= g, so letting V = M

i

, W = M

i+1

, and

U = U

i+1

satis�es the requirements of the theorem. If i is odd, then instead let V = M

i+1

,

W = M

i

, and U = U

i+1

.

5.2 The Asynchronous Problem

We will show the following theorem:

Theorem 4 Suppose n; t > 0 are such that n � 5t+ 1. Suppose that f and g are cautious

approximation functions. Then there exist multisets V , W , and U such that:

jV j = jW j = n � t;

jU j = n � t;

jV � U j = jW � U j = t; and

jf(V)� g(W)j � �(U)=c(n� 3t; 2t):

The implications of this result for the asynchronous agreement algorithm are analogous

to what Theorem 3 has to say about the synchronous algorithm: there exist multisets V ,

W , and U , such that if correct processes p and q (using approximation functions f and g,

respectively) receive multisets of values V and W , respectively, in some round of execution,

and U is the multiset of values held by correct processes at the start of that round, then

the new approximations held by p and q at the end of the round can be no closer than

�(U)=c(n � 3t; 2t). The lower bound given by this result also matches the upper bound

provided by the function f

2t;t

.

As before, the theorem is proved with the aid of a chain lemma. Let c = c(n � 3t; 2t).

The chain is de�ned so that:

1. M

0

has the value 0 with multiplicity n � 2t and the value 1 with multiplicity t, and

2. For 0 � i � c� 2, the multiset M

i+1

is obtained from M

i

by changing 2t of the values

from 0 to 1.

3. IfM

c�1

has the value 0 with multiplicity at least 2t+1, thenM

c

is obtained fromM

c�1

by changing 2t of the values from 0 to 1. If M

c�1

has the value 0 with multiplicity

23

� 2t, then M

c

is obtained from M

c�1

by changing t of the values from 0 to 1. Note

that M

c�1

will always have the value 0 with multiplicity at least t+ 1.

Lemma 11 Suppose n; t > 0 are such that n � 5t + 1. Let c = c(n � 3t; 2t). Then there

exist multisets M

0

;M

1

; . . . ;M

c

, and U

1

; U

2

; . . . ; U

c

, such that:

jM

i

j = n � t for 0 � i � c;

jU

i

j = n � t for 1 � i � c;

jM

i

� U

i+1

j = jM

i+1

� U

i+1

j = t for 0 � i � c� 1;

�(U

i

) = 1 for 1 � i � c;

and such that f(M

0

) = 0 and f(M

c

) = 1 whenever f is a cautious approximation function.

Proof { From the de�nition of c, we know that (2c+1)t+1 � n � (2c+3)t. We split the

proof into two cases. In case (2c+2)t+1 � n � (2c+3)t, then de�ne M

i

to have the value

0 with multiplicity n� (2i+ 2)t and the value 1 with multiplicity (2i+ 1)t, for each i with

0 � i � c. De�ne U

i

to have the value 0 with multiplicity n� (2i+1)t and the value 1 with

multiplicity 2it, for each i with 1 � i � c. In case (2c+ 1)t + 1 � n � (2c+ 2)t, then we

modify slightly the de�nition of M

c

and U

c

from the preceding case. That is, de�ne M

c

to

have the value 0 with multiplicity n� (2c+ 1)t and the value 1 with multiplicity 2ct. Also,

de�ne U

c

to have the value 0 with multiplicity n � 2ct and the value 1 with multiplicity

(2c� 1)t.

In both cases it is straightforward to check that the required properties hold.

The proof of Theorem 4 is entirely analogous to the proof of Theorem 3.

6 Resilience

The algorithms presented in this paper have some interesting resilience properties,

stronger than those usually claimed for Byzantine agreement algorithms. So far, we have

only claimed that the algorithms are resilient to t di�erent processes exhibiting Byzantine

faults during the entire course of the algorithm. However, we can claim more for situations

where processes fail and recover repeatedly. Our algorithms actually support resilience to

any t Byzantine faulty processes at a time (under suitable de�nitions of faultiness at a

24

particular time); the total number of faulty processes can be much greater than t, since we

can allow di�erent processes to be faulty at di�erent times.

We do not give a formal presentation of our resilience properties. Rather, we just give

a brief sketch of the main ideas.

First, consider the synchronous case. A faulty process is able to recover easily and

reintegrate itself into the algorithm. It can reenter the algorithm at any round, just by

sending an arbitrary value, collecting values and averaging them as usual to get a new

value. The process also needs to obtain an estimate of the number of rounds required

before termination. It can obtain such an estimate in the reentry round, just as it could in

the �rst round.

The asynchronous case is a little more complicated. A faulty process p needs to rejoin

the algorithm at some particular (asynchronous) round; however, it must be careful to rejoin

at some round that is not \out of date." That is, in the absence of additional failures of p,

it must be guaranteed to receive all of its messages for that and subsequent rounds. Process

p could not simply wait until it received n � t messages for some particular round k, since

those messages might have been delivered very late, and messages for round k + 1 might

have already been lost. However, it su�ces for p to send out a \recovery" message, and

await acknowledgements from n � t processes carrying the number of their current round.

Process p knows that the t + 1st smallest of these round numbers, plus 1, is an allowable

round number for it to use for reentry.

The recovering process is not able to use the same method of estimating a termination

round as it did initially. Therefore, it seems necessary to modify the asynchronous algorithm

to enable recovering processes to obtain termination estimates when needed. An easy

modi�cation that works is to have every process piggyback its estimate of the number of

rounds to termination on every message it sends. Then a recovering process can obtain a

new estimate just by taking the t + 1st smallest of the estimates it receives at the reentry

round.

7 Summary and Open Questions

We have de�ned a problem of approximate agreement on real numbers by processes

25

in a distributed system. We integrated simple approximation functions into two simple-

to-implement algorithms for achieving approximate agreement | one for a synchronous

distributed system, and the other for an asynchronous system. In addition, we showed

that both algorithms achieve the fastest possible convergence rate for algorithms of a par-

ticular form. The algorithm for an asynchronous system provides an interesting contrast

to the results in [FLP 83, DDS 83], which show that exact agreement is impossible in an

asynchronous system.

The ideas of this paper have been used in the design of algorithms for synchronizing

clocks in distributed systems [LL 84].

For the synchronous case, it is not di�cult to show that 3t+1 processes are necessary to

solve the approximate agreement problem. The proof is an adaptation of the lower bound

proof in [LSP 82], and appears in [FLM 85]. For the asynchronous case, our number of

processes is not optimal. In fact, it appears possible to reduce the number of processes to

as few as 3t+1. This reduction is obtained using a more complex algorithm, based on some

of the interesting ideas of [B 84]. This algorithm has a slower rate of convergence than ours.

The algorithms presented here have the undesirable property that the faulty processes,

by their actions in the �rst round, can cause the range of values received by correct processes

to be arbitrarily large, and hence can cause the time to convergence to be arbitrarily long.

It appears that some of the ideas of [B 84] can also be used to obtain improved initialization

rounds for the algorithms that eliminate this possibility.

To obtain the lower bound results, we had to restrict our attention to algorithms of

a standard form (ones that operate by broadcasting values and using received values to

compute a new approximation), and to functions with a natural, but apparently restric-

tive property (the \cautious" property). It would be interesting to obtain answers to the

following questions:

� Can the cautious property be weakened or removed entirely?

� Can algorithms not of the standard form considered here produce agreement faster?

We would also like to have a better understanding of the relationship between the

number of processes and the rate of convergence for approximate agreement algorithms. For

26

instance, the more complex asynchronous algorithm mentioned above uses fewer processes,

but has a slower rate of convergence than ours. Is there a tradeo�?

We can state a variant of the approximate agreement problem which uses a �xed number,

r, of rounds, and in which � is not predetermined. Each process starts with a real value, as

before. After r rounds, the processes must output their �nal values. The validity condition

is the same as before. The object of the algorithm is to insure the best possible agreement,

expressed as a ratio of the new diameter of the nonfaulty processes' values to the original

diameter. For given n; t and r, we would like to know the best ratio.

As before, if the algorithm is constrained to operate round-by-round, applying cautious

functions at each round, we obtain lower bounds which are exactly the same as are achieved

by our averaging functions. However, if the algorithm is unconstrained, the best bounds

we have are not at all tight. Consider the synchronous case, for example. The best upper

bound we have still arises from repeated application of our averaging function f

t;t

, and is

approximately (t=n)

k

. We can obtain a lower bound by extending our chain argument of

this paper to a k-dimensional hypercube (along the lines in [FL 82]). This extension gives

a lower bound of approximately (t=nk)

k

. This is still a considerable gap, which we would

like to see closed. Recent work of Fekete [F] has made some progress toward this goal.

Bibliography

[B 84] G. Bracha, \An Asynchronous b(n � 1)=3c-Resilient Consensus Protocol,"

Proceedings of 3rd ACM SIGACT-SIGOPS Symposium on Principles of Dis-

tributed Computing, pp. 154-162, August 1984.

[BL 85] J. Burns and N. A. Lynch, \The Byzantine Firing Squad Problem," Submitted

for publication.

[CDDS 85] B. Coan, D. Dolev, C. Dwork and L. Stockmeyer, \The Distributed Firing

Squad Problem," Proceedings of the Seventeenth Annual ACM Symposium on

Theory of Computing, May, 1985, pp. 335-345.

[DDS 83] D. Dolev, C. Dwork and L. Stockmeyer, \On the Minimal Synchronism Needed

27

for Distributed Consensus," Proceedings of 24th Annual Symposium on Foun-

dations of Computer Science, pp. 393-402, Nov. 1983. (Revised version to

appear in JACM.)

[DLPSW 83] D. Dolev, N. A. Lynch, S. Pinter, E. W. Stark, and W. E. Weihl, \Reaching

Approximate Agreement in the Presence of Faults," Proceedings of 3rd An-

nual IEEE Symposium on Reliability in Distributed Software and Database

Systems, pp. 145-154, October 1983.

[DS 82] D. Dolev and H. R. Strong, \Polynomial Algorithms for Multiple Processor

Agreement," Proceedings of the 14th ACM SIGACT Symposium on Theory of

Computing, pp. 401-407, May 1982.

[F] A. Fekete, private communication.

[FL 82] N. A. Lynch and M. Fischer, \A Lower Bound for the Time to Assure Inter-

active Consistency," Information Processing Letters 14, 4, pp. 183-186, June

1982.

[FLM 85] M. Fischer, N. A. Lynch, and M. Merritt, \Easy Impossibility Proofs for Dis-

tributed Consensus Problems," Distributed Computing, Vol. 1, No. 1, 1985.

[FLP 83] M. J. Fischer, N. A. Lynch, and M. S. Paterson, \Impossibility of Distributed

Consensus with one faulty process," JACM Vol. 32, No. 2 (April, 1985),

pp. 374-382.

[LL 84] N. A. Lynch and J. Lundelius, \A New Fault-Tolerant Algorithm for Clock

Synchronization," Proceedings of 3rd ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing, pp. 75-88, August 1984. (Also, revised

version submitted for publication.)

[LSP 82] L. Lamport, R. Shostak, and M. Pease, \The Byzantine Generals Problem,"

ACM Trans. on Programming Languages and Systems, Vol. 4, No. 2, pp.

382-401 (1982).

28

[PSL 80] M. Pease, R. Shostak, and L. Lamport, \Reaching Agreement in the Presence

of Faults," JACM, Vol. 27, No. 2, pp. 228-234 (1980).

29

