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Abstract

In previous work, we de�ned a notion of probabilistic I/O automata (PIOA), and

we showed that certain functions, which we called \probabilistic behavior maps," con-

stitute a compositional semantics for PIOAs that is fully abstract with respect to a

notion of testing equivalence. We also observed that information about completion

probability and expected completion time for a \closed PIOA" can be extracted from its

behavior map.

In the present paper, we greatly extend and re�ne our previous results, thereby

obtaining a practical method for computing completion probabilities and expected

completion times. Our method is compositional, in the sense that it can be applied to

a system of PIOAs one component at a time, without ever calculating the global state

space of the system. The method is based on symbolic calculations with vectors and

matrices of rational functions, and it draws upon a theory of observables, which are

mappings from delayed traces to real numbers that generalize \formal power series"

from algebra and combinatorics. We de�ne rational observables to be those satisfying

certain conditions, among which is the condition that a certain vector space of \deriva-

tives" be �nite-dimensional. Central to the theory is a notion of representation for

an observable, which generalizes the notion \linear representation" for formal power

series. We prove that the representable observables coincide with the rational ones;

this generalizes to observables a result of Carlyle and Paz equating the recognizable

series with those whose \syntactic right ideal" has �nite codimension. We also present

a minimization algorithm for representations of observables that generalizes a result of

Sch�utzenberger for formal power series. The minimization algorithm is applied in our

analysis method to limit combinatorial explosion that would otherwise occur.
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1 Introduction

In our previous paper [WSS97], we de�ned the class of probabilistic I/O automata (PIOA),

which are a model for distributed or concurrent systems that incorporates a notion of prob-

abilistic choice. The basic intuition underlying the model is the following: the time a PIOA

spends in a state before performing its next action is described by an exponentially dis-

tributed random variable whose parameter (the so-called delay parameter) depends on the

state. Under an independence assumption, a simple composition rule can be given for pro-

ducing, given a collection of interacting PIOAs, a single \composite" PIOA representing the

entire system.

We also showed how to associate with a PIOA a probabilistic behavior map, which in a

sense represents the externally observable aspects of the behavior of the PIOA. We showed

that behavior map semantics is compositional, in the sense that the behavior map associated

with a composite PIOA is uniquely determined by the behavior maps associated with the

components. We further showed that, for PIOAs satisfying a certain \delay restriction"

concerning their internal actions, behavior map semantics is also fully abstract with respect

to a behavioral equivalence based on a notion of probabilistic testing.

As a byproduct of the way of way probability is represented in the PIOA model, it is

meaningful to consider certain aspects of timing for PIOA executions. In [Wu96], it is noted

that the expected time for a PIOA to complete a speci�ed �nite sequence of actions (called a

trace) can be extracted from the probabilistic behavior map associated with that automaton,

and this idea was applied there to analyze some examples.

Certain limitations inherent in our previous work restricted its applicability as a method

for analyzing expected completion times in a practical setting. A major problem was that

our theory only supported \one trace at a time" analysis: given a PIOA A and a �nite trace,

the expected time for A to complete an execution having that trace could be determined, but

the theory did not provide any useful method by which to specify an in�nite set of traces and

to determine the expected time for A to complete some execution having one of the traces

in that set. The latter problem, rather than the former, is the type of timing analysis that is

more often encountered in practice. Another problem was that timing analysis could not be

performed on a system of PIOAs \one component at a time"; essentially, a full description

of the global state space system had to be constructed and the timing information extracted

from that. Any \non-compositional" analysis method that requires the construction of the

global state space of a system will in general only be able to handle very small systems, due

to the exponential growth of the state space as the number of components increases.

In this paper, we present a new theory and associated analysis methods that overcome

the limitations inherent in our previous work. One important part of our new theory is a

revised de�nition of probabilistic behavior map which does not have the \trace at a time"

limitation of our previous version. Our new de�nition makes use of a new notion of delayed

trace, which generalizes to PIOAs the standard notion of the trace of an execution of an

automaton, so that certain probabilistic scheduling information is represented along with
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the sequence of actions. An observable is de�ned to be a function from delayed traces to real

numbers. The behavior of a PIOA is de�ned to be a transformation of observables; that is, a

mapping from observables to observables. Our revised de�nition of PIOA behavior admits a

much simpler compositionality result (Theorem 1) than the previous version. In particular,

we show that the behavior of the composition of \compatible" probabilistic I/O automata

is given by the ordinary function composition of the corresponding behaviors.

We show (Lemma 3) that information about completion probability and expected comple-

tion time for a \closed" PIOA A can be obtained by applying its \empty alphabet behavior"

B

A

;

to appropriate observables. In particular, given a set T of �nite action sequences, pair-

wise incomparable with respect to the pre�x relation, one can de�ne an observable �

T

, such

that the value of B

A

;

�

T

on a delayed trace (0) having no actions, is the probability of the set

of executions of A whose delayed traces lie in the upward closure of T with respect to the

pre�x relation on delayed traces. We also de�ne the \expected completion time" for A with

respect to T to be the expected time for A to complete some execution having a delayed

trace that \just reaches" the set T , and we show that, for a particular observable 


T

, this

time is given by the value of B

A

;




T

on the delayed trace (0).

The above results suggest a naive approach to computing completion probability and

expected completion time for a system of PIOAs: construct the composite PIOA representing

the entire system, then evaluate the result of applying the behavior map for that system to

the observables �

T

and 


T

and then to the empty delayed trace (0). There are two problems

with this approach: (1) the evaluation of the probabilistic behavior map involves computing

the value of a summation over a very large (and potentially in�nite) set of executions for the

system; (2) the method requires the construction of the full global state space for the system.

We can avoid problem (1) by observing that the desired summation can be obtained, without

enumerating executions, by solving a system of linear equations that can be constructed from

the state space of the automaton. In fact, the resulting method works quite well for small

systems. However, the size (number of variables) of the system of equations grows linearly

with the number of global states, hence this method will use too much space to be useful for

large systems.

It turns out that we can do much better than the naive approach described in the previ-

ous paragraph. In particular, we can compute the result of applying the behavior map for a

system to a speci�c observable like �

T

or 


T

without enumerating executions, by working

compositionally, \a component at a time," in such a way that the global state space is never

constructed. This method is based on the realization that the observables �

T

and 


T

can be

represented in a certain way by a by a kind of automata, having states in a �nite-dimensional

vector space over the reals, that execute on delayed traces. We call such observables rep-

resentable. We also show (Theorems 3 and 4) that the class of representable observables

is closed under the application of PIOA behaviors, and that the result of applying a PIOA

behavior to a representable observable can be e�ectively computed in terms of a construction

on representations. Although this construction is a kind of \product construction," which

produces an output representation whose size depends on the product of the size of the input
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representation and the number of states in the PIOA, we can mitigate the blow-up in size by

applying a minimization algorithm to the result. We present a minimization algorithm (The-

orem 5) that, given the representation of an observable as input, outputs a representation

that in a sense has minimum size over all representations of the same observable.

Our theory of observables and their representations can be seen as a generalization of work

by Carlyle and Paz [CP71], Sch�utzenberger [Sch61a, Sch61b], and others (see [BR84] for ref-

erences), on formal power series and linear representations. In particular, our \observables"

generalize \formal power series," our \representations" generalize the \linear representa-

tions" for formal power series, and our \representable observables" generalize \recognizable

series." We de�ne a class of rational observables, which are those for which an associated

space of derivatives is a �nite-dimensional vector space, and we show (Theorem 2) that

an observable is rational if and only if it is representable. This in a sense generalizes to

observables a result of Carlyle and Paz [CP71], which equates the recognizable series with

those whose \syntactic right ideal" has �nite codimension. Our minimization algorithm for

representations of observables corresponds to a result of Sch�utzenberger [Sch61a, Sch61b] for

formal power series. The novel aspects of our work are: (1) the introduction of \delayed

traces" as a generalization of \words over a �nite alphabet", and \observables" as a gener-

alization of \formal power series"; (2) the recognition that \transformations of observables"

yield a compositional semantics for PIOAs that is expressive enough to permit the treat-

ment of expected termination time; (3) extension of the theory of \linear representations of

formal power series" to a theory of \representable observables"; and (4) use of the theory of

representable observables as a basis for deriving compositional algorithms for the analysis of

PIOAs. Though closed PIOA's are examples of continuous-time semi-Markov processes [?],

and as such have a variety of well-developed analysis techniques applicable to them, we are

not aware of such techniques that do not have as a prerequisite the construction of a global

system description such as a transition matrix or 
owgraph.

In other related work, Campos et al. in [CCM97] present BDD-based algorithms that

determine the exact bounds on the delay between two speci�ed events and the number

of occurrences of another event in all such intervals. Segala et al. [LSS94, PS95] have

developed a method for the analysis of the expected time complexity of randomized dis-

tributed algorithms. The method consists of proving auxiliary probabilistic time bound

statements of the form U|ft; pg! U

0

, which mean that whenever the algorithm begins

in a state in a set U , it will reach a state in set U

0

within time t with probability at

least p. Finally, a number of \stochastically timed" process algebras and Petri net for-

malisms have been proposed for the performance analysis of concurrent systems, including

[MBC84, GHR93, Hil96, Pri96, BDG98]. In the case of process algebra, these approaches

are sometimes referred to as \compositional" in the sense that a composite stochastic system

can be speci�ed algebraically in terms of its components.

The remainder of this paper is organized as follows: Section 1 is devoted to the basic

de�nitions and theory of PIOAs and probabilistic behavior maps. Section 2 treats rational

observables and their representations. Section 3 considers a simple example of the use of the
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techniques.

2 Probabilistic I/O Automata and Their Behaviors

2.1 Probabilistic I/O Automata

In this section, we recall the basic de�nitions from [WSS97], to which the reader is referred

for additional details and discussion. We give here simpli�ed versions of the de�nitions,

which are equivalent to those of [WSS97] in the case of �nite PIOAs, which are all that we

consider in the present paper.

A �nite probabilistic I/O automaton is a quadruple A = (Q; q

I

; E;�; �; �), where

� Q is a �nite set of states.

� q

I

2 Q is a distinguished start state.

� E is a �nite set of actions, partitioned into disjoint sets of input, output, and internal

actions, which are denoted by E

in

, E

out

, and E

int

, respectively. The set E

loc

= E

out

[

E

int

of output and internal actions is called the set of locally controlled actions, and

the set E

ext

= E

in

[ E

out

is called the set of external actions.

� � � Q�E�Q is the transition relation, which satis�es the following input-enabledness

condition: for any state q 2 Q and input action e 2 E

in

, there exists a state r 2 Q

such that (q; e; r) 2 �.

� � : (Q � E � Q) ! [0; 1] is the transition probability function, which is required to

satisfy the following conditions:

1. �(q; e; r) > 0 i� (q; e; r) 2 �.

2.

P

r2Q

�(q; e; r) = 1, for all q 2 Q and all e 2 E

in

.

3. For all q 2 Q, if there exist e 2 E

loc

and r 2 Q such that (q; e; r) 2 �, then

P

r2Q

P

e2E

loc
�(q; e; r) = 1,

� � : Q ! [0;1) is the state delay function, which is required to satisfy the following

condition: for all q 2 Q, we have �(q) > 0 if and only if there exist e 2 E

loc

and r 2 Q

such that (q; e; r) 2 �.

A �nite execution fragment for a probabilistic I/O automaton A is an alternating sequence

of states and actions of the form

q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

;

such that for each k with 0 � k < n, one of the following two conditions holds:
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1. e

k

2 E and (q

k

; e

k

; q

k+1

) 2 �.

2. e

k

62 E and q

k+1

= q

k

.

An execution fragment with q

0

= q

I

(the distinguished start state) is called an execution.

In case (1) above, we say that action e

k

is a native action of A, and that the triple

(q

k

; e

k

; q

k+1

) is a native transition of A. In case (2), we say that e

k

is a non-native action of

A and that (q

k

; e

k

; q

k+1

) is a non-native transition of A. We often use the notation q

k

e

k

�!q

k+1

to assert the disjunction of conditions (1) and (2) above. We adopt a convention whereby �

can be applied to triples (q; e; r), where e is a non-native action of A, by de�ning �(q; e; q) = 1

and �(q; e; r) = 0 for all other r 2 Q. We use the terms native execution fragment and native

execution to refer to an execution fragment or execution of A in which only native actions

appear.

If � denotes an execution fragment as above, then we will use �(k) to denote the state

q

k

, for 0 � k � n, and we will use �(k; k + 1) to denote the action e

k

, for 0 � k < n. We

use the term trace to refer to a sequence of actions. If � is an execution fragment as above,

then the trace of �, denoted tr(�), is the sequence of actions e

0

e

1

: : : e

n�1

appearing in �.

2.2 Composition

A �nite collection fA

i

: i 2 Ig of probabilistic I/O automata, whereA

i

= (Q

i

; q

I

i

; E

i

;�

i

; �

i

; �

i

),

is called compatible if for all i; j 2 I, i 6= j, we have E

out

i

\ E

out

j

= ; and E

int

i

\ E

j

= ;.

We de�ne the composition k

i2I

A

i

of a �nite compatible collection to be the probabilistic I/O

automaton (Q; q

I

; E;�; �; �), de�ned as follows:

� Q = k

i2I

Q

i

.

� q

I

= hq

I

i

: i 2 Ii.

� E =

S

i2I

E

i

, where

E

out

=

[

i2I

E

out

i

E

int

=

[

i2I

E

int

i

E

in

= (

[

i2I

E

in

i

) n E

out

:

� � is the set of all (hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) such that for all i 2 I, if e 2 E

i

, then

(q

i

; e; r

i

) 2 �

i

, otherwise r

i

= q

i

.

� �(hq

i

: i 2 Ii) =

P

i2I

�

i

(q

i

).

� If e 2 E

in

, then

�(hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) =

Y

i2I

�

i

(q

i

; e; r

i

):

If e 2 E

loc

k

for some k, then

�(hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) =

�

k

(q

k

)

P

i2I

�

i

(q

i

)

Y

i2I

�

i

(q

i

; e; r

i

):
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We use the notation AkB to denote the composition kfA;Bg of a compatible 2-element set

of PIOAs.

As discussed in [WSS97], the de�nitions of � and � above re
ect the intuition we wish

to capture concerning the execution of a system of PIOAs. Upon arrival in a state, a

component PIOA chooses randomly the length of time it will spend in that state before

executing its next \locally controlled" transition. The random choice is made according to

an exponential distribution described by the delay parameter associated with that state, and

it is made independently of the other PIOAs in the system. The de�nitions of � and � for

the composite system express the idea that the various component PIOAs are in a race to

see which of them will execute the next locally controlled action. This competition will be

won by the component that has chosen the smallest delay time, and the probability that any

given component will win the competition is given by the ratio of the local delay parameter

for that component over the sum of the local delay parameters for all components. The time

the system remains in a particular global state before executing the next locally controlled

action is the minimum of the times that each component spends in its respective local state.

This time is governed by an exponential distribution, whose parameter is the sum of the

parameters of the distributions for each of the components.

2.3 Probability Space

In [WSS97], we showed how a closed PIOA A (one with no input actions) induces a proba-

bility space over the set of all its executions. If � is a �nite execution of A, of the form:

q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

;

then let [�] denote the set of all executions of A having � as a pre�x. The measurable sets

of executions are those generated by declaring each set [�] to be measurable and closing up

under countable unions and complement. The probability measure pr

A

is the extension, to

the full class of measurable sets, of the mapping that assigns to each set of the form [�] the

quantity

p

A

(�) =

n�1

Y

k=0

�(q

k

; e

k

; q

k+1

):

Note the di�erence between pr

A

, which is a countably additive set function de�ned on the

class of measurable sets of executions, and p

A

, which is a function from �nite executions to

real numbers. In this paper, we shall also be interested in the related function w

A

(�) on

�nite executions, de�ned by:

w

A

(�) =

0

B

@

Y

fk:e

k

2E

loc

A

g

�

A

(q

k

)

1

C

A
p

A

(�):

We call w

A

(�) the weight of the execution �. Although the de�nition of w

A

may at �rst seem

somewhat ad hoc, it turns out that w

A

behaves in a more convenient fashion than p

A

(�)
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when considering the composition of PIOAs. In particular, w

A

has the useful property stated

in Lemma 1 below.

2.4 Delayed Traces, Observables, and Behaviors

Let E be a set of actions. A (�nite) delayed trace � over E consists of an alternating sequence

of the form:

d

0

e

0

�!d

1

e

1

�! : : :

e

n�1

�!d

n

;

where the d

k

are nonnegative real numbers and the the e

k

are actions in E. The sequence

e

0

; e

1

; : : : e

n�1

is called the trace of �, and we sometimes denote it by tr(�). The sequence

d

0

; d

1

; : : : ; d

n

is called the sequence of delay parameters of �. We often use the notation �(k)

to denote d

k

, and the notation �(k; k + 1) to denote e

k

. The number n is called the length

of �, and we denote it by j�j.

We use DTraces(E) to denote the set of all delayed traces over E. We also use the

notation (d)

E

, or just d, when E is clear from the context, to denote the empty delayed trace

in DTraces(E), consisting of the single delay parameter d and no actions.

Suppose � 2 DTraces(E). If E � E

0

, then a delayed trace �

0

2 DTraces(E

0

) is a

re�nement of �, and we write �

0

� �, if there exists a monotone injection

� : fj : 0 � j � j�jg ! fk : 0 � k � j�

0

jg

such that �(0) = 0 and such that the following conditions hold:

1. �

0

(�(j)� 1; �(j)) = �(j � 1; j) for 0 < j � j�j.

2. �

0

(k � 1; k) 2 E

0

n E for all k outside the image of �.

3. �

0

(k) =

(

�(j); for 0 � j < j�j and �(j) � k < �(j + 1);

�(j�j); for �(j�j) � k � j�

0

j:

Figure 1 (a) depicts graphically the re�nement relationship between �

0

and �.

Suppose A is a PIOA. If � is a delayed trace over E, then an execution � of A is

conformant with �, and we write � / �, if there exists a monotone injection

� : fj : 0 � j � j�jg ! fk : 0 � k � j�jg

such that �(0) = 0 and such that the following conditions hold:

1. �(�(j)� 1; �(j)) = �(j � 1; j) for 0 < j � j�j.

2. �(k � 1; k) 2 E

A

n E, for all k outside the image of �.
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d

m�1

+ �(q

n�2

)

- - - -
: : :

- -

- - - - - : : : - -

- - - - - : : : - -

- - : : : -
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Figure 1: Re�nement, Conformance, and Combination

It is easy to check that if � / �, then there is exactly one monotone injection � that satis�es

these conditions. Figure 1 (b) depicts graphically the conformance relationship between �

and �.

Suppose � 2 DTraces(E) and � / �, with � the corresponding monotone injection. Then

the combination of � and � is the delayed trace � � � 2 DTraces(E [ E

A

) of the form:

d

0

e

0

�!d

1

e

1

�! : : :

e

n�1

�!d

n

;

where

1. e

k

= �(k; k + 1) for 0 � k < j�j.

2. d

k

=

(

�

A

(�(k)) + �(j); for 0 � j < j�j and �(j) � k < �(j + 1);

�

A

(�(k)) + �(j�j); for �(j�j) � k � j�j:

Figure 1 (c) depicts graphically the result of combining � and �.

An observable over a set of actions E is a mapping:

� : DTraces(E)! R:

If A is a PIOA and E is a set of actions, then the E-behavior of A is the transformation of

observables:

B

A

E

: (DTraces(E [ E

A

)! R)! (DTraces(E)!R)

9



de�ned by:

B

A

E

�� =

X

�/�

�(� � �)w

A

(�):

In general, B

A

E

�� will not be de�ned for all � and �, because the de�ning summation above

need not converge.

2.5 Compositionality

We now prove a compositionality result that shows how the behavior B

AjB

E

for a composite

PIOA AjB can be derived from the component behaviors B

A

E

and B

B

E[E

A

for the PIOAs A

and B, respectively.

We �rst establish a technical lemma.

Lemma 1 Suppose A and B are compatible PIOAs. Then, given a delayed trace �, the set

of all executions � of AjB such that � / �, is in bijective correspondence with the set of all

pairs of executions (�

A

; �

B

), where �

A

is an execution of A such that �

A

/ �, and �

B

is

an execution of B such that �

B

/ (�

A

� �). Moreover, whenever � corresponds under the

bijection to the pair (�

A

; �

B

) we have:

� � � = �

B

� (�

A

� �) and w

AjB

(�) = w

A

(�

A

) w

B

(�

B

):

Proof { The bijection is given by the mapping that takes an execution � of AjB, of the

form:

(q

A

0

; q

B

0

)

e

0

�!(q

A

1

; q

B

1

)

e

1

�! : : :

e

n�1

�!(q

A

n

; q

B

n

);

to the pair (�

A

; �

B

), where �

B

is the following execution of B:

q

B

0

e

0

�!q

B

1

e

1

�! : : :

e

n�1

�!q

B

n

;

and �

A

is the execution

q

A

k

0

e

k

0

�!q

A

k

1

e

k

1

�! : : :

e

k

m�1

�! q

A

k

m

e

k

m

�!q

A

n

;

where k

0

< k

1

< : : : < k

m

is the sequence of all indices k with 0 � k < n for which either

e

k

2 E

A

or else e

k

62 E

B

.

To describe the inverse mapping, suppose (�

A

; �

B

) satis�es �

A

/ � and �

B

/ (�

A

� �).

Let

� : fj : 0 � j � j�

A

� �jg ! fk : 0 � k � j�

B

jg

be the monotone injection that exists due to the relationship �

B

/ (�

A

� �), and for each

k with 0 � k < j�

B

j, let j

k

be the greatest j such that �(j) � k. Then it is easy to

see that there is an execution � of AjB uniquely de�ned by the conditions j�j = j�

B

j,

�(k; k + 1) = �

B

(k; k + 1) for 0 � k < j�j, and

�(k) =

(

(�

A

(j); �

B

(k)); for 0 � j < j�j and �(j) � k < �(j + 1);

(�

A

(j�

A

j); �

B

(k)); for �(j�

A

j) � k � j�j;
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that this execution correponds to the pair (�

A

; �

B

) under the map de�ned above, and satis�es

the relationship:

� � � = �

B

� (�

A

� �):

To verify the identity

w

AjB

(�) = w

A

(�

A

) w

B

(�

B

)

for � corresponding to (�

A

; �

B

), suppose � has the form

(q

A

0

; q

B

0

)

e

0

�!(q

A

1

; q

B

1

)

e

1

�!(q

A

2

; q

B

2

) : : :

e

n�1

�!(q

A

n

; q

B

n

):

We compute as follows, using the de�nition of AkB:

w

AkB

(�) =

0

B

@

Y

fk:e

k

2E

loc

AkB

g

�

AkB

(q

A

k

; q

B

k

)

1

C

A

 

n�1

Y

k=0

�

AkB

((q

A

k

; q

B

k

); e

k

; (q

A

k+1

; q

B

k+1

))

!

=

0

B

@

Y

fk:e

k

2E

loc

A

[E

loc

B

g

�

A

(q

A

k

) + �

B

(q

B

k

)

1

C

A

 

n�1

Y

k=0

�

A

(q

A

k

; e

k

; q

A

k+1

)

! 

n�1

Y

k=0

�

B

(q

B

k

; e

k

; q

B

k+1

)

!

0

B

@

Y

fk:e

k

2E

loc

A

g

�

A

(q

A

k

)

�

A

(q

A

k

) + �

B

(q

B

k

)

1

C

A

0

B

@

Y

fk:e

k

2E

loc

B

g

�

B

(q

B

k

)

�

A

(q

A

k

) + �

B

(q

B

k

)

1

C

A

=

 

n�1

Y

k=0

�

A

(q

A

k

; e

k

; q

A

k+1

)

! 

n�1

Y

k=0

�

B

(q

B

k

; e

k

; q

B

k+1

)

!

0

B

@

Y

fk:e

k

2E

loc

A

g

�

A

(q

A

k

)

1

C

A

0

B

@

Y

fk:e

k

2E

loc

B

g

�

B

(q

B

k

)

1

C

A

= w

A

(�

A

) w

B

(�

B

):

In the last step, we have made use of the fact that

 

n�1

Y

k=0

�

A

(q

A

k

; e

k

; q

A

k+1

)

!

0

B

@

Y

fk:e

k

2E

loc

A

g

�

A

(q

A

k

)

1

C

A

= w

A

(�

A

):

Even though �

A

, in general, will be shorter than �

B

, the fact that �

B

/ (�

A

��) means that

any actions in �

B

that are not also in �

A

will be in E

B

n E

A

. Thus, if e

k

is such an action,

corresponding to the transition (q

A

k

; q

B

k

)

e

k

�!(q

A

k+1

; q

B

k+1

) in �, then by the de�ning conditions

for �, the transition q

A

k

e

k

�!q

A

k+1

of A is a nonnative transition of A. Since �

A

by de�nition

has value one on nonnative transitions, it follows that we may drop the e

k

term from the

11



�rst product. Since we cannot have e

k

2 E

loc

A

if e

k

is nonnative for A, the second product

does not contain any e

k

term. The stated fact follows immediately.

Theorem 1 Suppose A and B are compatible PIOAs, and E is a set of actions. Then

B

AkB

E

= B

A

E

� B

B

E[E

A

:

Proof { We compute, using the de�nitions of B

A

E

, B

B

E[E

A

, and B

AkB

E

:

(B

A

E

� B

B

E[E

A

)�� = (B

A

E

(B

B

E[E

A

�))�

=

X

�

A

/�

(B

B

E[E

A

�(�

A

� �)) w

A

(�

A

)

=

X

�

A

/�

X

�

B

/(�

A

��)

�(�

B

� (�

A

� �)) w

B

(�

B

) w

A

(�

A

)

=

X

�/�

�(� � �) w

AkB

(�);

where we have used Lemma 1 in the last step to replace the double summation by a single

one. But the last expression above is precisely B

AkB

E

��.

The following corollary is worth noting. It expresses a commutativity property of behavior

composition that derives from the more obvious commutativity property AkB = BkA of

PIOA composition.

Corollary 2 Suppose A and B are compatible PIOAs. Then

B

A

E

� B

B

E[E

A

= B

B

E

� B

A

E[E

B

:

The above de�nitions and compositionality result are a generalization and simpli�cation

of those in [WSS97]. For a �xed action sequence u, the de�nition given in [WSS97] for the

probabilistic behavior map E

A

u

was as follows:

E

A

u

[g(D)] =

X

d

g(d)p

A

u

(d);

where the index of summation d ranges over R

juj+1

, where g : R

juj+1

! R, and where p

A

u

(d)

denotes the summation of p

A

(�) over all executions � with action sequence u and sequence

of delay parameters d. We now recognize that u and d are best regarded as two attributes of

a single, more general entity (a delayed trace), that g should be correspondingly generalized

(to an observable �), and that E

A

is properly regarded as a transformation B

A

E

of observables.

In addition, we see that the correct place for the summing of delay parameters to appear is in

the de�nition of B

A

E

, rather than in the compositionality law, and that the ugly \correction

factor" h(d

A

;d

B

) appearing in the compositionality law proved in [WSS97] can be made to

disappear if the de�nition of B

A

E

uses the \weight" w

A

(�), rather than the probability p

A

(�).

12



2.6 Completion Probability and Expected Completion Time

We are interested in calculating the expected time taken for a PIOA A to perform a �nite

execution having an action sequence in a speci�ed set, which in general will be in�nite.

To avoid ambiguity surrounding executions that \complete" multiple times in the sense of

having more than one pre�x with an action sequence lying in the speci�ed set, we restrict

our attention to sets of action sequences that are pairwise incomparable with respect to the

pre�x relation.

Formally, we de�ne a target set to be a set T of �nite sequences of actions that is pairwise

incomparable with respect to the pre�x relation. We write T " to denote the upward-closure

of T with respect to pre�x.

Suppose T � E

�

is a target set. The characteristic observable of T is the map �

T

:

DTraces(E)! R de�ned as follows:

�

T

(�) =

(

1; if tr(�) 2 T

0; otherwise:

Two other observables will be of interest to us. The probability observable is the map � :

DTraces(E)! R de�ned by:

�(�) =

j�j�1

Y

k=0

1

�(k)

:

The completion time observable is the mapping 
 : DTraces(E)!R de�ned by:


(�) =

0

@

j�j�1

X

k=0

1

�(k)

1

A

0

@

j�j�1

Y

k=0

1

�(k)

1

A

:

If T is a target set, then we de�ne:

�

T

(�) = �(�)�

T

(�) 


T

(�) = 
(�)�

T

(�):

If A is a closed PIOA, and T is a target set, then the completion probability pr

c

(A;T ) for

A with respect to T is the quantity:

pr

c

(A;T ) = pr

A

f� : � native; tr(�) 2 T "g:

We say that A almost certainly completes T , if pr

c

(A;T ) = 1.

Lemma 3 Suppose A is a closed PIOA, and T is a target set. Then

pr

c

(A;T ) = B

A

;

�

T

(0);

where (0) denotes the delayed trace with no actions and zero as its sole delay parameter.

13



Proof { We compute:

B

A

;

�

T

(0) =

X

�/(0)

�

T

(� � 0) w

A

(�)

=

X

� / (0)

tr(�) 2 T

0

@

j�j�1

Y

k=0

1

�

A

(�(k))

1

A

w

A

(�)

=

X

� / (0)

tr(�) 2 T

p

A

(�)

= pr

A

f� : � native; tr(�) 2 T "g

= pr

c

(A;T );

where in the �rst line we have used the de�nition of B

A

, in the second line we have used the

de�nition of �

T

and the fact that if � / (0), then tr(� � (0)) = tr(�), and in the third line

we have used the fact that, for A closed, if � / (0), then every action in � is in E

loc

, hence

0

@

j�j�1

Y

k=0

1

�

A

(�(k))

1

A

w

A

(�) = p

A

(�);

and in the fourth line we have used the de�nition of the probability measure pr

A

and the

fact that if � / (0), then � is a native execution of A.

If A is a closed PIOA, and T is a target set such that A almost certainly completes T ,

then the expected completion time exp

c

(A;T ) for A with respect to T is the quantity:

exp

c

(A;T ) =

X

� native

tr(�) 2 T

0

@

j�j�1

X

k=0

1

�

A

(�(k))

1

A

p

A

(�):

Lemma 4 Suppose A is a closed PIOA, and T is a target set. Then

exp

c

(A;T ) = B

A

;




T

(0):

Proof { We compute:

B

A

;




T

(0) =

X

�/(0)




T

(� � (0)) w

A

(�)

=

X

� native

tr(�) 2 T

0

@

j�j�1

X

k=0

1

�

A

(�(k))

1

A

0

@

j�j�1

Y

k=0

1

�

A

(�(k))

1

A

w

A

(�)
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=

X

� native

tr(�) 2 T

0

@

j�j�1

X

k=0

1

�

A

(�(k))

1

A

p

A

(�)

= exp

c

(A;T );

using similar reasoning to that of Lemma 3.

3 Computing Expected Completion Time Composition-

ally

In this section, we develop the theory of \rational observables," and show how this theory,

together with that of the previous section, can be used to obtain a compositional method

for computing expected completion time.

3.1 Rational Observables and Their Representations

Let Obs(E) denote the set of all observables � : DTraces(E) ! R. Then Obs(E) is a a

vector space under the usual pointwise addition and scalar multiplication:

(� + �

0

)(�) = �(�) + �

0

(�): (a�)(�) = a(�(�))

Suppose � : DTraces(E)! R is an observable. If d 2 R and a 2 E, then the derivative

of � by d and a is the observable �

d

a

�!

de�ned by:

�

d

a

�!

(�) = �(d

a

�!�);

where if � is the delayed trace:

d

0

e

0

�!d

1

e

1

�! : : :

e

n�1

�!d

n

;

then d

a

�!� denotes the delayed trace:

d

a

�!d

0

e

0

�!d

1

e

1

�! : : :

e

n�1

�!d

n

:

Lemma 5 For all d 2 R and a 2 E, the mapping taking � 2 Obs(E) to its derivative

�

d

a

�!

2 Obs(E) is a linear transformation on Obs(E).

Proof { Simply observe that, for a �xed d 2 R and a 2 E, for all � and �

0

in Obs(E), and

c and c

0

in R, we have:

(c� + c

0

�

0

)

d

a

�!

(�) = (c� + c

0

�

0

)(d

a

�!�)

= c�(d

a

�!�) + c

0

�

0

(d

a

�!�)

= c�

d

a

�!

(�) + c

0

�

0

d

a

�!

(�):
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If S is an arbitrary subset of Obs(E), then de�ne

DS = f�

d

a

�!

: � 2 S; d 2 R; a 2 Eg;

and let D

�

S denote the least subspace of Obs(E) containing S and satisfyingD(D

�

S) � D

�

S.

De�ne an observable � 2 Obs(E) to be rational if the following three conditions hold:

1. The space D

�

� is a �nite dimensional subspace of Obs(E).

2. For all 	 2 D

�

�, the quantity 	(d) (the value of 	 on the delayed trace of length zero

with single delay parameter d) is a rational function of d.

3. For all 	 2 D

�

�, all a 2 E, and all linear maps L : D

�

� ! R, the quantity 	

d

a

�!

L is

a rational function of d (note that we denote the application of a linear transformation

by writing it to the right of its argument).

De�ne the dimension of a rational observable � to be the dimension of D

�

�.

Lemma 6 If � 2 Obs(E) is rational, then every element of D

�

� is rational.

Proof { By construction, every element of D

�

� can be expressed as a (�nite) linear combi-

nation of derivatives of �. It is easy to check that a linear combination of rational observables

is again rational, so it remains to be shown that if 	 is a rational observable, then 	

d

a

�!

is

also rational, for all d 2 R and a 2 E. We simply verify that conditions (1)-(3) hold for

	

d

a

�!

. For condition (1), observe that clearly we have D

�

	

d

a

�!

� D

�

	, hence the dimension

of D

�

	

d

a

�!

can be no greater than that of D

�

	, which is �nite. For condition (2), note that

the map \evaluation at (d

0

)," which takes 	 to 	(d

0

), is linear. Thus, since 	 is rational,

the quantity 	

d

a

�!

(d

0

) is a rational function of d

0

. Finally, for condition (3), recall that the

map taking 	 to its derivative 	

d

a

�!

is linear. Thus, if L : D

�

�! R is linear, then so is the

map taking 	 to 	

d

a

�!

L. Since 	 is rational, the quantity 	

d

a

�!

L is a rational function of

d.

Let Rat(x) denote the set of all real-valued rational functions of a single real parameter x.

For n a nonnegative integer, an n-dimensional representation of an observable � 2 Obs(E)

consists of

� An n-dimensional row vector C with entries in R,

� An n-dimensional column vector D(x) with entries in Rat(x),

� For each a 2 E, an n� n matrix M

a

(x), with entries in Rat(x),
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such that for all delayed traces � 2 DTraces(E), the quantity �(�) is given by the formula:

�(�) = C

0

@

j�j�1

Y

k=0

M

�(k;k+1)

(�(k))

1

A

D(�(j�j));

An observable � 2 Obs(E) is called representable if there exists a n-dimensional representa-

tion of �, for some n.

A representation is essentially a kind of automaton that computes a function on delayed

traces (i.e. an observable). The states of the automaton are n-dimensional row vectors of

real numbers, with the vector C serving as the initial state. If the automaton is in state X,

and the initial portion of the input is d

a

�!, then the automaton multiplies the current state

vector by the matrix M

a

(d), and advances the input pointer. Upon reaching the end of the

input, if the current state is X and the single remaining delay parameter is d, then the row

vector X is multiplied by the column vector D(d), to obtain a scalar, which becomes the

output produced by the automaton.

Lemma 7 A triple (C;D(x); fM

a

(x) : a 2 Eg) is an n-dimensional representation of an

observable � 2 Obs(E) if and only if there exists a linear transformation R : R

n

! Obs(E)

such that the following conditions hold:

1. CR = �.

2. XD(d) = (XR)(d), for all X 2 R

n

, and all d 2 R.

3. XM

a

(d)R = (XR)

d

a

�!

, for all X 2 R

n

, all d 2 R, and all a 2 E.

Proof { Suppose (C;D(x); fM

a

(x) : a 2 Eg) is an n-dimensional representation of �.

De�ne the map R : R

n

! Obs(E) so that for each X 2 R

n

, the observable XR 2 Obs(E) is

de�ned by the condition of having (X;D(x); fM

a

(x) : a 2 Eg) as a representation. Observe

that if X and X

0

are in R

n

, then for any delayed trace � 2 DTraces(E) we have:

(cX + c

0

X

0

)

0

@

j�j�1

Y

k=0

M

�(k;k+1)

(�(k))

1

A

D(�(j�j))

= c

8

<

:

X

0

@

j�j�1

Y

k=0

M

�(k;k+1)

(�(k))

1

A

D(�(j�j))

9

=

;

+c

0

8

<

:

X

0

0

@

j�j�1

Y

k=0

M

�(k;k+1)

(�(k))

1

A

D(�(j�j))

9

=

;

;

thus showing (cX + c

0

X

0

)R = c(XR) + c

0

(X

0

R); that is, R is linear. Clearly, CR = �,

showing that condition (1) holds. Also, (XR)(d) = XD(d) is immediate by the fact that,
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by construction, (X;D(x); fM

a

(x) : a 2 Eg) is a representation of XR, hence condition (2)

holds. To see that condition (3) holds as well, observe that

((XM

a

(d))R)(�) = XM

a

(d)

0

@

j�j�1

Y

k=0

M

�(k;k+1)

(�(k))

1

A

D(�(j�j))

= (XR)(d

a

�!�)

= (XR)

d

a

�!

(�):

Conversely, suppose we are given (C;D(x); fM

a

(x) : a 2 Eg) and �, such that there

exists a linear transformation R : R

n

! Obs(E) satisfying conditions (1)-(3). Then a

straightforward induction on j�j, using conditions (1)-(3), establishes that, for all delayed

traces � 2 Obs(E), we have:

�(�) = C

 

l�1

Y

k=0

M

�(k;k+1)

(�(k))

!

D(�(j�j));

thus showing that (C;D(x); fM

a

(x) : a 2 Eg) is an n-dimensional representation of �.

In the previous proof, we saw that, to any n-dimensional representation (C;D(x); fM

a

(x) :

a 2 Eg) of an observable � 2 Obs(E) there corresponds in a natural way a linear transfor-

mation R : R

n

! Obs(E), which is de�ned to take X 2 R

n

to the observable XR having

(X;D(x); fM

a

(x) : a 2 Eg) as a representation. In the sequel, we shall refer to the map R

as the linear transformation associated with the representation (C;D(x); fM

a

(x) : a 2 Eg).

Theorem 2 An observable � 2 Obs(E) is rational if and only if it is representable. More-

over, if an observable � is representable, then it has a representation whose dimension is

equal to the dimension of �, and this dimension is the minimum possible among representa-

tions of �.

Proof { We �rst show that representable observables are rational. Suppose � has an n-

dimensional representation (C;D(x); fM

a

(x) : a 2 Eg). Let

R : R

n

! Obs(E);

be the associated linear transformation, then the image of R contains the space D

�

�. Since

the image of a �nite dimensional vector space under a linear transformation is �nite dimen-

sional, this shows that D

�

� is a �nite dimensional subspace S of Obs(E), thus establishing

condition (1) of the de�nition of a rational observable. To prove condition (2) of that de�-

nition, simply observe that, for each X 2 R

n

, the value (XR)(d) is given by the formula

XD(d);
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which is clearly a rational function of d. To prove condition (3) in the de�nition of a rational

observable, let 	 2 D

�

�, a 2 E, and L : D

�

� ! R be given. Then 	 = XR for some

X 2 R

n

, and also 	

d

a

�!

= XM

a

(d)R. Thus, we have

	

d

a

�!

L = XM

a

(d)RL:

Since the right-hand side is a rational function of d (as can easily be seen by noting that

application of the linear map RL corresponds to multiplication on the right by a column

vector), condition (3) follows.

Conversely, suppose � 2 Obs(E) is rational. We show � is representable by constructing

an n-dimensional representation of �, where n is the dimension of D

�

�.

Let B = f	

1

;	

2

; : : : ;	

n

g be a basis for D

�

�. Let C 2 R

n

be the row vector of coor-

dinates of � with respect to the basis B. For each x 2 R, the map \evaluate at x," which

takes each 	 2 S to its value 	(x) on the delayed trace of length zero with delay parameter

x, is a linear functional on D

�

�. Since by Lemma 6, every observable in D

�

�, including

the 	

i

, is rational, it follows that the quantity 	

i

(x) is a rational function r

i

2 Rat(x) for

1 � i � n. Let D(x) be the column vector having r

i

as its ith entry, for 1 � i � n.

For x 2 R and a 2 E, let M

a

(x) be the matrix, with respect to the basis B, of the linear

transformation on S taking each 	 2 S to its derivative 	

x

a

�!

. Since the mapping taking

an element of S to its 	

j

-coordinate is linear, and since every element of D

�

� is rational, it

follows by condition (3) in the de�nition of an observable that the 	

j

-coordinate of (	

i

)

x

a

�!

is a rational function r

ij

2 Rat(x). Let M

a

(x) be the matrix whose entries are the r

ij

, for

1 � i � n, 1 � j � n.

We claim that the triple (C;D(x); fM

a

(x) : a 2 Eg) is an n-dimensional representation

of �. But this is clear, because the map R : R

n

! Obs(E) taking X 2 R

n

to the observable

� having (X;D(x); fM

a

(x) : a 2 Eg) as a representation is clearly a linear transformation

satisfying the conditions of Lemma 7.

Finally, note that the representation of � constructed above has dimension n which is

equal to the dimension of D

�

�. Moreover, this dimension is minimal among representations

of �, because given any m-dimensional representation of � the image of the associated linear

transformation R : R

m

! Obs(E) can have dimension at most m. If m < n, this image

cannot contain D

�

�.

3.2 Examples of Rational Observables

In this section we show that certain observables of interest are representable, hence rational.

The completion probability observable � on DTraces(E) is de�ned by:

�(�) =

j�j�1

Y

k=0

1

�(k)

:

Recall from previous sections that this observable is related to the expected probability for

a PIOA to complete a target set.
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Lemma 8 The completion probability observable � has a 1-dimensional representation

(C;D(x); fM

a

(x) : a 2 Eg);

where

C = (1) D(x) = (1) M

a

(x) = (1=x):

Proof { Obvious from the de�nition.

The completion time observable 
 on DTraces(E) is de�ned by:


(�) =

0

@

j�j�1

Y

k=0

1

�(k)

1

A

0

@

j�j�1

X

k=0

1

�(k)

1

A

:

Recall from previous sections that the completion time observable is related to the expected

completion time for a PIOA with respect to a target set.

Lemma 9 The completion time observable 
 has the 2-dimensional representation

(C;D(x); fM

a

(x) : a 2 Eg);

where

C =

�

0 1

�

D(x) =

 

1

0

!

M

a

(x) =

 

1=x 0

1=x

2

1=x

!

:

Proof { For a delayed trace � of the form:

d

0

a

0

�!d

1

a

1

�! : : :

a

m�1

�!d

m

;

where m > 0, let �

0

denote the delayed trace

d

1

a

1

�! : : :

a

m�1

�!d

m

:

We may then write:


(�) =

 

m�1

Y

k=0

1

d

k

! 

m�1

X

k=0

1

d

k

!

=

1

d

0

 

m�1

Y

k=1

1

d

k

! 

1

d

0

+

m�1

X

k=1

1

d

k

!

=

1

d

2

0

�(�

0

) +

1

d

0


(�

0

)
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It follows from this computation that 
 and � satisfy the system of \di�erential equations":

�

d

a

�!

=

1

d

�




d

a

�!

=

1

d

2

� +

1

d


:

Thus, the set B = ( � 
 ) is a basis for D

�


. Note further that C is the row vector of

coe�cients of 
 with respect to this basis, D(x) is the column vector of coe�cients of the

\evaluate at x" functional on S with respect to the dual basis B

�

, and M

a

(x) is the matrix,

with respect to B of the linear transformation \derivative with respect to x

a

�!" on S. It

follows that (C;D; fM

a

: a 2 Eg) is a representation of 
 of minimal dimension.

Lemma 10 Suppose T is a target set which is also a regular subset of E

�

. Then the observ-

ables �

T

and 


T

are rational.

Proof { Since T is regular, it is accepted by a DFAM. Let fq

1

; q

2

; : : : ; q

m

g be an enumera-

tion of the states ofM, with q

1

the start state. We also assume that q

m

is the unique accept

state of M. Since T is pairwise incomparable under pre�x, this can always be arranged, by

manipulating M if necessary.

We �rst construct an m-dimensional representation of �

T

. De�ne

C =

�

1 0 : : : 0

�

D(x) =

0

B

B

B

@

0

0

: : :

1

1

C

C

C

A

For each a 2 E, de�ne the matrix M

a

as follows:

(M

a

)

ij

(x) =

(

1=x; if q

i

a

�!q

j

in M;

0; otherwise:

To prove that this is indeed a representation of �

T

, we claim that for all delayed traces

� of the form:

d

0

a

0

�!d

1

a

1

�! : : :

a

l�1

�!d

l

;

the jth component of the row vector

C

 

l�1

Y

k=0

M

�(k;k+1)

(�(k))

!

is equal to

Q

l�1

k=0

1

d

k

, if the input string �(0; 1)�(1; 2) : : : �(l � 1; l) takes M from state q

1

to

state q

j

, otherwise 0. This can be shown by a straightforward induction on l. It follows from

this that for all delayed traces � of the above form, the value

C

 

l�1

Y

k=0

M

�(k;k+1)

(�(k))

!

D(�(l))
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is equal to

Q

l�1

k=0

1

d

k

, if the input string �(0; 1)�(1; 2) : : : �(l�1; l) is accepted byM, otherwise

0. But this is precisely the value of �

T

(�).

We next construct a 2m-dimensional representation of 


T

. The idea is the same as that

for �

T

, except that we construct C, D(x), and the M

a

(x) in 2-dimensional blocks. De�ne

C =

�

0 1 0 0 : : : 0 0

�

D(x) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

0

0

0

: : :

1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

For each a 2 E, let M

a

(x) be the m�m matrix of 2� 2 blocks de�ned as follows:

(M

a

)

ij

(x) =

8

>

>

>

>

<

>

>

>

>

:

 

1=x 0

1=x

2

1=x

!

; if q

i

a

�!q

j

in M;

 

0 0

0 0

!

; otherwise:

We claim that for all delayed traces � of the form:

d

0

a

0

�!d

1

a

1

�! : : :

a

l�1

�!d

l

;

the jth 2-dimensional block of the row vector

C

 

l�1

Y

k=0

M

�(k;k+1)

(�(k))

!

is equal to

( 0 1 )

l�1

Y

k=0

 

1=d

k

0

1=d

2

k

1=d

k

!

if the input string �(0; 1)�(1; 2) : : : �(l � 1; l) takes M from state q

1

to state q

j

, otherwise

( 0 0 ). Again, this can be shown by a straightforward induction on l. It follows from this

that for all delayed traces � of the above form, the value

C

 

l�1

Y

k=0

M

�(k;k+1)

(�(k))

!

D(�(l))

is equal to 
(�), if the input string �(0; 1)�(1; 2) : : : �(l� 1; l) is accepted by M, otherwise

0. But this is precisely the de�nition of 


T

(�).
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3.3 Rational Observables and PIOA Behaviors

In this section we prove that the class of rational observables is closed under the application

of PIOA behaviors. Moreover, a representation of B

A

E

(�) can be e�ectively computed from

a representation of �.

We �rst consider the case of the behavior B

A

E

of a PIOA A, where E

A

� E.

Theorem 3 Suppose A is a PIOA. If � is a rational observable in Obs(E), where E

A

� E,

then B

A

E

� is also a rational observable in Obs(E). Moreover, a representation of B

A

E

� can

be e�ectively computed from a representation of �.

Proof { Suppose � 2 Obs(E) is a rational observable, where E

A

� E, and let

(C;D(x); fM

a

(x) : a 2 Eg)

be an n-dimensional representation of �. Suppose the PIOA A has m states. We show how

to construct an mn-dimensional representation

(C

0

;D

0

(x); fM

0

a

(x) : a 2 Eg)

of B

A

E

�.

The idea is similar to that of Lemma 10. Let q

1

; q

2

; : : : ; q

m

, be an enumeration of the

states of A, with q

1

the distinguished start state. Let C

0

be the mn-dimensional row vector

consisting of n-dimensional blocks as follows:

C

0

= ( C 0 : : : 0 ):

Let D

0

be the mn-dimensional column vector consisting of n-dimensional blocks as follows:

D

0

(x) =

0

B

B

B

@

D(x + �

A

(q

1

))

D(x + �

A

(q

2

))

: : :

D(x + �

A

(q

m

))

1

C

C

C

A

For a 2 E, let M

0

a

be the mn�mn matrix consisting of n� n blocks (M

0

a

)

ij

de�ned by:

(M

0

a

)

ij

(x) = �

ij

�

i

M

a

(x+ �

A

(q

i

));

where

�

ij

= �

A

(q

i

; a; q

j

)

and

�

i

=

(

�

A

(q

i

); if a 2 E

loc

A

;

1; otherwise:

The following is the basic correctness property for the above representation.
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Claim: For all delayed traces � in DTraces(E) of the form:

d

0

a

0

�!d

1

a

1

�! : : :

a

l�1

�!d

l

;

the jth n-dimensional block of the row vector:

C

0

 

l�1

Y

k=0

M

0

�(k;k+1)

(�(k))

!

is equal to the following sum:

X

�2Exec

A

(�;q

j

)

C

 

l�1

Y

k=0

M

�(k;k+1)

(�(k) + �

A

(�(k)))

!

w

A

(�);

where Exec

A

(�; q

j

) denotes the set of all executions of A of the form:

r

0

a

0

�!r

1

a

1

�! : : :

a

l�1

�!r

l

;

with r

0

= q

1

and r

l

= q

j

.

To see that the theorem follows from the claim, note that, in view of the de�nition of D

0

,

the quantity

C

0

 

l�1

Y

k=0

M

0

�(k;k+1)

(�(k))

!

D

0

(�(l))

is equal to

m

X

j=1

X

�2Exec

A

(�;q

j

)

C

 

l�1

Y

k=0

M

�(k;k+1)

(�(k) + �

A

(�(k)))

!

D(�(l) + �

A

(�(l))) w

A

(�);

which in turn is equal to

X

�/�

�(� � �)w

A

(�);

or, more simply,

B

A

E

��:

To prove the claim, we proceed by induction on l. The basis case l = 0 simply asserts

that

(C

0

)

j

=

(

C; if j = 1;

0; otherwise;

which is true by de�nition of C

0

.

Suppose now the result has been established for l � 0 and consider the case of l + 1.

Given delayed trace � of the form:

d

0

a

0

�!d

1

a

1

�! : : :

a

l

�!d

l+1

;
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let �

0

denote the pre�x of length l:

d

0

a

0

�!d

1

a

1

�! : : :

a

l�1

�!d

l

;

We observe:

C

0

 

l

Y

k=0

M

0

�(k;k+1)

(�(k))

!

= C

0

 

l�1

Y

k=0

M

0

�(k;k+1)

(�(k))

!

M

0

�(l;l+1)

(�(l)):

Applying the induction hypothesis and using the de�nition of M

0

�(l;l+1)

(�(l)) we have:

(C

0

)

j

=

m

X

i=1

8

<

:

X

�2Exec

A

(�

0

;q

i

)

C

 

l�1

Y

k=0

M

�(k;k+1)

(�(k) + �

A

(�(k)))

!

w

A

(�)

9

=

;

�M

�(l;l+1)

(�(l) + �

A

(�(l)))�

aij

�

ai

:

But this is easily seen to be equal to:

X

�2Exec

A

(�;q

j

)

C

 

l

Y

k=0

M

�(k;k+1)

(�(k) + �

A

(�(k)))

!

w

A

(�);

as required.

We now show how to extend the previous result to the case of B

A

E

, where we do not

necessarily have E

A

� E. If E � E

0

, then de�ne the map [ - ]

E

: Obs(E

0

)! Obs(E) by:

[	]

E

(�) =

X

�

0

��

	(�

0

):

Note that the sum on the right need not converge, in general, so that [	]

E

will be de�ned

only for certain 	 2 Obs(E

0

).

The following result states that the E-behavior of A is determined by the (E [ E

A

)-

behavior of A.

Lemma 11 Suppose A is a PIOA. Then for all sets of actions E, for all observables � 2

Obs(E [ E

A

), and for all delayed traces � 2 DTraces(E) we have:

B

A

E

�� =

X

�

0

��

B

A

E[E

A

��

0

= [B

A

E[E

A

�]

E

(�):

Proof { Write out the de�nition and observe that for an execution � of A we have � / �

if and only if there exists a unique �

0

2 DTraces(E [ E

A

) such that �

0

� � and � / �

0

.

In view of Lemma 11, the map [ - ]

E

allows us to reduce the problem of computing a

representation of B

A

E

� to that of computing, given a representation of an observable 	 2

Obs(E [ E

A

), a representation of the observable [	]

E

2 Obs(E). This is the content of

Theorem 4 below.
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Lemma 12 Suppose E � E

0

. Suppose further that S is a linear subspace of Obs(E

0

) such

that:

1. DS � S.

2. [	]

E

is de�ned for all 	 2 S.

Then the following relations are satis�ed for all 	 2 S, all d 2 R, and all a 2 E:

([	]

E

)

d

a

�!

= [	

d

a

�!

]

E

+

X

a

0

2E

0

nE

([	

d

a

0

�!

]

E

)

d

a

�!

[	]

E

(d) = 	(d) +

X

a

0

2E

0

nE

[	

d

a

0

�!

]

E

(d):

Proof { To prove the �rst relation, observe that if �

0

� (d

a

�!�), then either

1. �

0

is d

a

�!�

00

, where �

00

� �, or

2. �

0

is d

a

0

�!�

00

, where �

00

� (d

a

�!�).

Thus, assuming [	]

E

is de�ned, we may write:

([	]

E

)

d

a

�!

� =

X

�

00

��

	(d

a

�!�

00

) +

X

a

0

2E

0

nE

X

�

00

�(d

a

�!�)

	(d

a

0

�!�

00

)

= [	

d

a

�!

]

E

� +

X

a

0

2E

0

nE

([	

d

a

0

�!

]

E

)

d

a

�!

�;

from which the �rst relation follows.

To prove the second relation, observe that if �

0

� d, then either

1. �

0

is d, or

2. �

0

is d

a

0

�!�

00

, where �

00

� d.

Thus, we may write:

[	]

E

(d) = 	(d) +

X

a

0

2E

0

nE

X

�

00

�d

	(d

a

0

�!�

00

)

= 	(d) +

X

a

0

2E

0

nE

[	

d

a

0

�!

]

E

(d);

which is the second relation.
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Theorem 4 Suppose (C

0

;D

0

; fM

0

a

0

: a

0

2 E

0

g) is a representation of an observable �

0

2

Obs(E

0

), and suppose E � E

0

, and suppose [ - ]

E

is well de�ned on D

�

�

0

. Suppose further

that the power series:

I +

^

M (x) +

^

M

2

(x) + : : :

converges (componentwise) for all nonnegative x 2 R, where we de�ne

^

M(x) =

X

a

0

2E

0

nE

M

0

a

0

(x):

Then the matrix I �

^

M (x) is nonsingular for all nonnegative x 2 R, and an n-dimensional

representation of [�

0

]

E

is given by

(C

0

; (I �

^

M (x))

�1

D

0

(x); f(I �

^

M (x))

�1

M

0

a

(x) : a 2 Eg):

Proof { First, note that it is easy to show that the componentwise convergence of the

indicated power series implies that I�

^

M(x) is nonsingular, and its inverse is the sum of the

series.

Now, let R : R

n

! Obs(E) be de�ned by:

XR = [XR

0

]

E

;

where R

0

: R

n

! Obs(E

0

) is the linear transformation associated with the given represen-

tation of �

0

. Clearly, the linearity of R follows from that of R

0

and the fact that [ - ]

E

is

well-de�ned, hence linear by the form of its de�nition, on D

�

�

0

. We claim that R satis�es

the three conditions of Lemma 7 with respect to the data (C;D(x); fM

a

(x) : a 2 Eg), thus

the latter is a representation of [�

0

]

E

.

1. That CR = [�

0

]

E

is immediate by construction.

2. From Lemma 12 (1), the following relation holds for all 	 in D

�

�

0

, all d 2 R, and all

a 2 E:

([	]

E

)

d

a

�!

= [	

d

a

�!

]

E

+

X

a

0

2E

0

nE

([	

d

a

0

�!

]

E

)

d

a

�!

:

Thus, using the fact that (C

0

;D

0

(x); fM

0

a

0

(x) : a

0

2 E

0

g) is a representation of �

0

, for

all Y 2 R

n

, all d 2 R, and all a 2 E we have:

(Y R)

d

a

�!

= YM

0

a

(d)R +

X

a

0

2E

0

nE

(YM

0

a

0

(d)R)

d

a

�!

:

Rearranging terms using linearity and using the de�nition of

^

M(x), we have

(Y (I �

^

M(d))R)

d

a

�!

= YM

0

a

(d)R:
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Since this holds for all Y 2 R

n

, it certainly holds for Y = X(I �

^

M(d))

�1

, hence

(XR)

d

a

�!

= (X(I �

^

M(d))

�1

M

0

a

(d)R

= XM

a

(d)R

holds for all X 2 R

n

, all d 2 R, and all a 2 E, as required.

3. From Lemma 12 (2), the following relation holds for all 	 in D

�

�

0

and all d 2 R:

[	]

E

(d) = 	(d) +

X

a

0

2E

0

nE

[	

d

a

0

�!

]

E

(d):

Thus, using the fact that (C

0

;D

0

(x); fM

0

a

0

(x) : a

0

2 E

0

g) is a representation of �

0

, for

all Y 2 R

n

and all d 2 R, we have:

(Y R)(d) = Y D

0

(d) +

X

a

0

2E

0

nE

(YM

0

a

0

(d)R)(d):

Rearranging terms using linearity and using the de�nition of

^

M(x), we have

(Y (I �

^

M(d))R)(d) = Y D

0

(d):

Since this holds for all Y 2 R

n

, it certainly holds for Y = X(I �

^

M(d))

�1

, hence

(XR)(d) = X(I �

^

M(d))

�1

D

0

(d)

holds for all X 2 R

n

and all d 2 R, as required.

We now obtain su�cient conditions for the technical hypotheses of the previous theorem

to hold.

Lemma 13 Suppose M is an n � n matrix over an arbitrary �eld. If the matrix I �M is

nonsingular, then its inverse (I �M)

�1

is the unique solution X to the equation:

X = I +MX:

Proof { Since

(I �M)(I �M)

�1

= I;

we have

(I �M)

�1

�M(I �M)

�1

= I;

hence

(I �M)

�1

= I +M(I �M)

�1

;
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so that (I �M)

�1

solves X = I +MX.

Suppose X and X

0

are both solutions to the above equation. Then

X �X

0

=M(X �X

0

);

hence

(I �M)(X �X

0

) = 0;

Multiplying both sides by (I �M)

�1

, we have

X �X

0

= 0;

hence X = X

0

.

Lemma 14 Suppose M is an n � n matrix over the reals such that

1. M � 0 componentwise.

2. The matrix I �M is nonsingular, and its inverse (I �M)

�1

satis�es (I �M)

�1

� 0

componentwise.

Then the power series:

I +M +M

2

+ : : :

converges componentwise to (I �M)

�1

.

Proof { An inductive argument, using the fact that M � 0 and that (I �M)

�1

� 0 and

satis�es X = I +MX, shows that:

0 � I � I +M � I +M +M

2

� : : : � (I �M)

�1

holds componentwise. This shows that the power series is bounded componentwise, hence

converges componentwise. Clearly then the sum is a solution to X = I +MX. But by

Lemma 13, (I �M)

�1

is the unique solution, hence it is equal to the sum.

Corollary 15 Suppose (C

0

;D

0

(x); fM

0

a

0

: a

0

2 E

0

g) is a representation of �

0

2 Obs(E

0

), and

suppose E � E

0

. Let

^

M(x) =

P

a

0

2E

0

nE

M

0

a

0

(x). Suppose

1. M

a

0

(x) � 0 and D

0

(x) � 0 componentwise for all a

0

2 E

0

and all nonnegative x 2 R.

2. For all x 2 R, the matrix I �

^

M (x) is nonsingular, and its inverse satis�es (I �

^

M(x))

�1

� 0 componentwise.

Then the power series:

I +

^

M (x) +

^

M

2

(x) + : : :

converges componentwise for all nonnegative x 2 R, and [	]

E

is de�ned for all 	 2 D

�

�

0

.
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Proof { By Lemma 14, the hypotheses imply the componentwise convergence of the indi-

cated power series.

It remains to be shown that [	]

E

is de�ned for all 	 2 D

�

�

0

. Now, if 	 2 D

�

�

0

, then

	 = XR

0

for someX 2 R

n

, where R

0

: R

n

! Obs(E

0

) is the linear transformation associated

with the given representation of �

0

. We show that [	]

E

is is de�ned in case X � 0 holds

componentwise; the case of arbitrary 	 in D

�

�

0

follows easily from this by linearity, using

the fact that an arbitrary X 2 R

n

can be written uniquely as X = X

+

�X

�

, where X

+

� 0

and X

�

� 0 hold componentwise.

Suppose, then, that X � 0 holds componentwise. Let � 2 DTraces(E) be arbitrary,

and suppose �

0

2 DTraces(E

0

) satis�es �

0

� �, with corresponding monotone injection �.

Suppose j�

0

j = n. Then the fact that (X;D

0

(x); fM

0

a

0

: a

0

2 E

0

g) is a representation for 	

gives us the following formula for 	(�

0

):

	(�

0

) = X

0

@

�(1)�1

Y

k=�(0)

M

0

�

0

(k)

(d

0

)

1

A

M

0

a

0

(d

0

)

0

@

�(2)�1

Y

k=�(1)

M

0

�

0

(k)

(d

1

)

1

A

M

0

a

1

(d

1

)

: : :

0

@

�(n�1)�1

Y

k=�(n�2)

M

0

�

0

(k)

(d

n�1

)

1

A

M

0

a

n�1

(d

n�1

)

0

@

n

Y

k=�(n�1)

M

0

�

0

(k)

(d

n

)

1

A

D

0

(d

n

):

As all terms in the above formula are nonnegative, summing the above formula over all �

0

��

we obtain:

X

�

0

��

	(�

0

) � X(I �

^

M (d

0

))

�1

M

0

a

0

(d

0

)

(I �

^

M (d

1

))

�1

M

0

a

1

(d

1

)

: : : (I �

^

M (d

2

))

�1

M

0

a

n�1

(d

n�1

)

(I �

^

M (d

n

))

�1

D

0

(d

n

):

In particular, the above summation converges. But this summation is the de�nition of

[	]

E

(�).

3.4 Example

We now apply the method of the previous section to calculate the completion probability

and expected completion time for a simple example.
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(0)--

@

@R�

�

q0 q1

a

t

[p]

[1-p]

(d)

 #

Figure 2: Example PIOA for Calculation of Expected Completion Time

Let A be the PIOA with E

A

= ft; ag, where t is an internal action and a is an output

action, with Q

A

= fq

0

; q

1

g, where q

0

is the start state, with �

A

(q

0

; a; q

1

) = p, �

A

(q

0

; t; q

0

) =

1 � p, and �

A

(q

i

; a

0

; q

j

) = 0 for all other cases, and with �

A

(q

0

) = d and �

A

(q

1

) = 0 (see

Figure 2). Let T be the target set consisting of the single string a.

We wish to calculate the completion probability for A with respect to T , and the expected

completion time for A with respect to T . Note that for this simple example, it is possible

to carry out by hand a non-compositional method for determining these quantities. In

particular, the expected completion time x satis�es the following linear equation:

x = 1=d + (1� p)x+ p � 0;

which expresses the expected completion time from state q

0

as the sum of the expected

\dwell time" in state q

0

, plus the sum of the expected delays from the successor states q

0

and q

1

of q

0

, weighted respectively by the probability of transitions to these successor states.

Solving this equation for x yields the result:

x = 1=dp

In a similar fashion, the completion probability can be shown to be 1.

We now apply the theory of the preceding sections to provide an alternative calculation of

the same quantities. We wish to emphasize that, although the calculations are more involved

for this simple example, the real advantage of our method over the \equation-solving" method

will be realized on very large systems having many components. For these cases, the non-

compositional equation-solving method will yield an unmanageably large system of equations

to be solved, whereas our method can be applied one component at a time, potentially

avoiding thereby a similar explosion in the size of the data to be stored (assuming, of course

that we systematically apply the minimization algorithm to be presented in Section 3.5).

Following the theory of the preceding sections, the completion probability for the above

example is given by:

B

A

;

�

T

(0)

and the expected completion time is given by:

B

A

;




T

(0)
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To calculate the completion probability, we �rst note that the observable 


T

has the

4-dimensional representation given by:

C




T

= ( 0 1 0 0 ) D(x) =

0

B

B

B

@

0

0

1

0

1

C

C

C

A

M

a

(x) =

0

B

B

B

@

0 0 1=x 0

0 0 1=x

2

1=x

0 0 0 0

0 0 0 0

1

C

C

C

A

M

t

(x) =

0

B

B

B

@

1=x 0 0 0

1=x

2

1=x 0 0

0 0 0 0

0 0 0 0

1

C

C

C

A

For �

T

, we simply replace C




T

by

C

�

T

= ( 1 0 0 0 ):

This does not give a representation of minimal dimension, but this is not required.

From the above, using Theorem 3, we can compute an 8-dimensional representation for

B

A

E

A




T

:

C




T

= ( 0 1 0 0 0 0 0 0 ) D(x) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

0

1

0

0

0

1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

M

a

(x) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0

dp

x+d

0

0 0 0 0 0 0

dp

(x+d)

2

dp

x+d

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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M

t

(x) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

d(1�p)

x+d

0 0 0 0 0 0 0

d(1�p)

(x+d)

2

d(1�p)

x+d

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

For B

A

E

A

�

T

, we replace C




T

by

C

�

T

= ( 1 0 0 0 0 0 0 0 )

Next, we wish to compute representations for

B

A

;

�

T

= [B

A

E

A

�

T

]

;

:

and

B

A

;




T

= [B

A

E

A




T

]

;

;

We �rst compute the matrix I �

^

M (x) = (I �M

a

(x)�M

t

(x)):

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

x+dp

x+d

0 0 0 0 0 �

dp

x+d

0

�

d(1�p)

(x+d)

2

x+dp

x+d

0 0 0 0 �

dp

(x+d)

2

�

dp

x+d

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Using a computer algebra system (GNU Emacs Calc 2.02) to invert this matrix symbolically,

we obtain:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

x+d

x+dp

0 0 0 0 0

dp

x+dp

0

d(1�p)

(x+dp)

2

x+d

x+dp

0 0 0 0

dp

(x+dp)

2

dp

x+dp

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

From this, we can calculate the completion probability.

C

�

T

(I �

^

M (x))

�1

D(x) =

dp

x+ dp

:
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Evaluating at x = 0 and assuming dp 6= 0 yields the result: 1.

We can also compute the expected completion time.

C




T

(I �

^

M(x))

�1

D(x) =

dp

(x+ dp)

2

:

Evaluating at x = 0 gives:

1

dp

:

3.5 Minimization of Representations

In this section, we present an algorithm that, given a representation (C;D; fM

a

: a 2 Eg)

for an observable �, computes a representation (C

0

;D

0

; fM

0

a

: a 2 Eg) for � which is of

minimal dimension.

We �rst obtain necessary and su�cient conditions for a representation to be minimal.

Lemma 16 Suppose (C;D(x); fM

a

(x) : a 2 Eg) is an n-dimensional representation of an

observable � 2 Obs(E). Then this representation is minimal if and only if the associated

linear transformation

R : R

n

! Obs(E)

is an isomorphism from R

n

to D

�

�.

Proof { If R is an isomorphism from R

n

to D

�

�, then the dimension of D

�

� must be n,

thus showing that the representation is minimal.

Conversely, if the representation is minimal, then D

�

� must have dimension n. Since

D

�

� is contained in the image of R, it follows that the image of R has dimension at least n.

But the image of R can have dimension no more than n (the dimension of its domain, R

n

),

hence the image of R has dimension exactly n. Thus, R is injective and D

�

� coincides with

the image of R, showing that R is an isomorphism from R

n

to D

�

�.

Lemma 17 Suppose (C;D(x); fM

a

(x) : a 2 Eg) is an n-dimensional representation of an

observable � 2 Obs(E). Then this representation is minimal if and only if neither of the

following two (in�nite) systems of equations has any nontrivial solutions:

1. The set of all equations of the form

X(

l�1

Y

k=0

M

a

k

(d

k

))D(d

l

) = 0

in the unknown row vector X, where l ranges over all nonnegative integers, the a

k

range over all elements of E, and the d

k

range over all nonnegative reals.
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2. The set of all equations of the form

C(

l�1

Y

k=0

M

a

k

(d

k

))Y = 0

in the unknown column vector Y , where l ranges over all nonnegative integers, the a

k

range over all elements of E, and the d

k

range over all nonnegative reals.

Proof { We �rst show that a nontrivial solution either to system (1) or system (2) would

imply that the representation is non-minimal. Let R : R

n

! Obs(E) be the linear transfor-

mation associated with the representation.

If system (1) has a nontrivial solution X, then that would imply that the observable XR

is identically zero. But then (cX)R = c(XR) = 0 = XR for all c 2 R, showing that in this

case the mapping R cannot be injective. It follows by Lemma 16 that the representation

cannot be minimal.

If system (2) has a nontrivial solution Y , then that means Y is orthogonal to the subspace

of R

n

spanned by all vectors of the form C(

Q

l�1

k=0

M

a

k

(d

k

)). But then the dimension of this

subspace must be strictly less than n. Since D

�

� is contained in this subspace, it follows that

the dimension of � is strictly less than n, so that an n-dimensional representation cannot be

minimal.

Conversely, suppose that the representation is non-minimal. Then by Lemma 16 the

mapping R is not an isomorphism of R

n

to D

�

�. Then either R is not injective, or else the

image of R contains an observable that is not in D

�

�. If R is not injective, then XR = X

0

R

for some distinct X and X

0

in R

n

. This implies (X�X

0

)R is the identically zero observable,

which then implies that X �X

0

is a nontrivial solution to system (1). Suppose now that

the image of R contains an observable 	 that is not in D

�

�. Then 	 is independent of all

observables XR, where X can be expressed in the form

X = C(

l�1

Y

k=0

M

a

k

(d

k

));

so that the space spanned by such observables has dimension strictly less than n. Since we

have already shown that R is injective, it follows that the subspace of R

n

spanned by the

set of all X that can be expressed in the above form also has dimension strictly less than

n, hence is a proper subspace of R

n

. Therefore, there exists a nontrivial Y 2 R

n

which is

orthogonal to this subspace. Such a Y is a nontrivial solution to the system (2).

Lemma 18 There exist algorithms for:

1. Computing a basis for the subspace of all n-dimensional row vectors X 2 R

n

that

satisfy a system of identities of the form:

XD

j

(x) = 0; all nonnegative x 2 R; 1 � j � m
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where D

1

(x);D

2

(x); : : : ;D

m

(x) are given n-dimensional column vectors with entries in

Rat(x).

2. Computing a basis for the subspace of all n-dimensional column vectors Y 2 R

n

that

satisfy a system of identities of the form:

C

j

(x)Y = 0; all nonnegative x 2 R; 1 � j � m

where C

1

(x); C

2

(x); : : : ; C

m

(x) are given n-dimensional row vectors with entries in

Rat(x).

Proof { We only prove (1), the proof of (2) is analogous. Suppose

D

j

(x) =

0

B

B

B

@

d

j1

(x)

d

j2

(x)

: : :

d

jn

(x)

1

C

C

C

A

:

A row vector

X = ( x

1

x

2

: : : x

n

)

satis�es the jth identity if and only if the rational function

x

1

d

j1

(x) + x

2

d

j2

(x) + : : :+ x

n

d

jn

(x)

is identically zero. By expressing each d

jk

(x) as a quotient of polynomials in x, combining

the above terms over a common denominator, reducing by cancellation of factors common

between the numerator and the denominator, and then equating the coe�cient of each power

of x in the numerator to zero, we obtain a homogeneous system of linear equations in the

unknowns x

1

; x

2

; : : : ; x

n

, with the property that a row vector

X = ( x

1

x

2

: : : x

n

)

solves this system if and only if it is a solution to the jth identity. Solving simultaneously

the m systems of linear equations obtained in this way yields a basis for the space of all row

vectors X that simultaneously satisfy the original identities.

Lemma 19 There exist algorithms that:

1. Given D(x) and fM

a

(x) : a 2 Eg, compute a basis for the solution space of the system

of all equations of the form:

X(

l�1

Y

k=0

M

a

k

(d

k

))D(d

k

) = 0; l � 0; a

k

2 E; d

k

2 R; d

k

� 0
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2. Given C and fM

a

(x) : a 2 Eg, compute a basis for the solution space of the system of

all equations of the form:

C(

l�1

Y

k=0

M

a

k

(d

k

))Y = 0: l � 0; a

k

2 E; d

k

2 R; d

k

� 0

Proof { (1) The algorithm is based on the observation that if S denotes the solution space,

then S = \

1

k=0

S

k

, where

S

0

= fX 2 R

n

: XD(x) = 0; all x 2 Rg;

and

S

k+1

= S

k

\ fX 2 R

n

: XM

a

(x) 2 S

k

; all a 2 E; x 2 Rg:

The algorithm works by successively computing a basis for each S

k

, until a point is reached

where S

k+1

has the same dimension as S

k

, which implies that S

k+1

= S

k

= S.

We now give the full description of the algorithm. First, apply Lemma 19 to obtain a

basis

B

0

= fB

01

; B

02

; : : :B

0n

0

g

for the subspace S

0

of R

n

. Then, repeat the following step until no further reduction in

dimension is achieved:

� Given a linearly independent set B

k

= fB

k1

; B

k2

; : : : ; B

kn

k

g, spanning a subspace S

k

of R

n

, solve the system of simultaneous linear equations:

B

kj

Y = 0; (1 � j � n

k

)

to obtain a basis

C

k

= fC

k1

; C

k2

; : : : ; C

km

k

g

for the orthogonal complement S

?

k

of S

k

. Then, apply Lemma 19 to solve the system

consisting of the equations (1) and identities (2) below:

1.

XC

kj

= 0; (1 � j � m

k

)

2.

XM

a

(x)C

kj

= 0; (1 � j � m

k

; a 2 E; x 2 R)

to obtain a basis

B

k+1

= fB

k+1;1

; B

k+1;2

; : : : ; B

k+1;n

k+1

g

for a subspace S

k+1

of R

n

. Observe that S

k+1

is a subspace of S

k

, due to the presence

of the equations (1).
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We claim that when the above step yields no further reduction in dimension (i.e. n

k+1

= n

k

),

then the resulting set B

k

is a basis for the space S of solutions X to the set of all equations

of the form:

X(

l�1

Y

k=0

M

a

k

(d

k

))D(d

k

) = 0:

For, clearly S = \

k

S

k

. Moreover, when S

k+1

= S

k

, then S

k

0

= S

k

for all k

0

� k, and hence

S

k

= S.

(2) is proved in an entirely analogous fashion, using the observation that if S denotes the

solution space, then S = \

1

k=0

S

k

, where

S

0

= fY 2 R

n

: CY = 0g;

and

S

k+1

= S

k

\ fY 2 R

n

:M

a

(x)Y 2 S

k

; all a 2 E; x 2 Rg:

Lemma 20 Suppose (C;D(x); fM

a

(x) : a 2 Eg) is an n-dimensional representation of an

observable � 2 Obs(E). Suppose the system of all equations of the form:

X(

l�1

Y

k=0

M

a

k

(d

k

))D(d

k

) = 0:

has a nontrivial solution X. Let m be the dimension of the solution space. Then � has

an (n � m)-dimensional representation (C

0

;D

0

(x); fM

0

a

(x) : a 2 Eg), which is e�ectively

computable from the given n-dimensional representation.

Proof { Using Lemma 19, we can compute a basis B = fB

1

; B

2

; : : : ; B

m

g (of row vectors)

for the solution space S of the above system of equations and a basis C = fC

1

; C

2

; : : : ; C

n�m

g

for the orthogonal complement S

?

of S. Assume that the basis C is orthonormal, which can

be ensured using the Gram-Schmidt procedure. Let P

S

? be the (n � (n�m))-dimensional

matrix of the projection of R

n

(row vectors) to S

?

, with respect to the basis C for S

?

and

the natural basis for R

n

. Explicitly, for 1 � i � n �m, the ith column of the matrix P

S

?

contains the components of the basis vector C

i

. Let Q

S

? = P

t

S

?

, which is the ((n�m)�n)-

dimensional matrix of the embedding of S

?

in R

n

, with respect to the basis C for S

?

and

the natural basis for R

n

.

Before proceeding to exhibit the (n�m)-dimensional representation for �, we �rst observe

that the following relationship holds for all a 2 E:

P

S

?Q

S

?M

a

(x)P

S

? =M

a

(x)P

S

?:

This is because of the fact that, for an arbitrary vector X, the vector X �XP

S

?
Q

S

?
is the

orthogonal projection of X onto the subspace S of R

n

. From the de�ning condition for S,
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it is easy to see that S is invariant under M

a

(x); that is, if X 2 S, then also XM

a

(x) 2 S.

Thus the vector

XM

a

(x)�XP

S

?Q

S

?M

a

(x)

is also in S, hence

XM

a

(x)P

S

? �XP

S

?Q

S

?M

a

(x)P

S

? = 0;

that is to say,

XM

a

(x)P

S

? = XP

S

?Q

S

?M

a

(x)P

S

?:

Since X was arbitrary, the relation

M

a

(x)P

S

? = P

S

?Q

S

?M

a

(x)P

S

?

follows. Similar reasoning establishes D(x) = P

S

?Q

S

?D(x).

We now de�ne C

0

= CP

S

?, M

0

a

(x) = Q

S

?M

a

(x)P

S

?, and D

0

(x) = Q

S

?D(x). We claim

that that (C

0

;D

0

(x); fM

0

a

(x) : a 2 Eg) is also a representation of �. To show this, it su�ces

to show that

C

 

l�1

Y

k=0

M

a

k

(d

k

)

!

P

S

?
= C

0

 

l�1

Y

k=0

M

0

a

k

(d

k

)

!

(1)

for all delayed traces

d0

a

0

�!d

1

a

1

�! : : :

a

l�1

�!d

l

:

For then, since D(x) = P

S

?Q

S

?D(x), it follows that

C

0

 

l�1

Y

k=0

M

0

a

k

(d

k

)

!

D

0

(d

l

) = C

0

 

l�1

Y

k=0

M

0

a

k

(d

k

)

!

Q

S

?D(d

l

)

= C

 

l�1

Y

k=0

M

a

k

(d

k

)

!

P

S

?Q

S

?D(d

l

)

= C

 

l�1

Y

k=0

M

a

k

(d

k

)

!

D(d

l

):

To prove the stated equations, we proceed by induction on l. If l = 0, then

CP

S

? = C

0

is simply the de�nition of C

0

. Suppose now that the stated equations hold for all delayed

traces of length l or less, and consider a delayed trace:

d

0

a

0

�!d

1

a

1

�! : : :

a

l

�!d

l+1

:
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Then, using the induction hypothesis and the de�nition of M

0

a

l

(d

l

), we have

C

0

(

l

Y

k=0

M

0

a

k

(d

k

)) = C

0

(

l�1

Y

k=0

M

0

a

k

(d

k

))M

0

a

l

(d

l

)

= C(

l�1

Y

k=0

M

a

k

(d

k

))P

S

?
Q

S

?
M

a

l

(d

l

)P

S

?
:

But, as we have observed, P

S

?Q

S

?M

a

l

(d

l

)P

S

? = M

a

l

(d

l

)P

S

?, hence the last term above is

equal to:

C(

l

Y

k=0

M

a

k

(d

k

))P

S

? ;

as required.

Lemma 21 Suppose (C;D(x); fM

a

(x) : a 2 Eg) is an n-dimensional representation of an

observable � 2 Obs(E). Suppose the system of all equations of the form:

C(

l�1

Y

k=0

M

a

k

(d

k

))Y = 0

has a nontrivial solution Y . Let m be the dimension of the solution space. Then � has

an (n � m)-dimensional representation (C

0

;D

0

(x); fM

0

a

(x) : a 2 Eg), which is e�ectively

computable from the given n-dimensional representation.

Proof { Using Lemma 19, we can compute a basis C = fC

1

; C

2

; : : : ; C

m

g (of column vectors)

for the solution space S of the above system of equations and a basis B = fB

1

; B

2

; : : : ; B

n�m

g

for the orthogonal complement S

?

of S. Assume that the basis B is orthonormal, which can

be ensured using the Gram-Schmidt procedure. Let P

S

? be the ((n �m)� n)-dimensional

matrix of the projection of R

n

(column vectors) to S

?

, with respect to the basis B and the

natural basis for R

n

. Explicitly, for 1 � i � n �m, the ith row of the matrix P

S

? consists

of the components of the basis vector B

i

. Let Q

S

?
= (P

S

?
)

t

, the (n� (n�m))-dimensional

matrix of the embedding of S

?

in R

n

, with respect to the basis B and the natural basis for

R

n

.

We now de�ne C

0

= CQ

S

?, M

0

a

(x) = P

S

?M

a

(x)Q

S

?, and D

0

(x) = P

S

?D(x). We claim

that that (C

0

;D

0

(x); fM

0

a

(x) : a 2 Eg) is also a representation of �. The proof is essentially

a \time-reversed" version of the proof of Lemma 20. We use the invariance of S under left

multiplication by M

a

(x) to establish the relations:

P

S

?M

a

(x) = P

S

?M

a

(x)Q

S

?P

S

? ;

C = CQ

S

?P

S

? ;
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then use these relations to prove that:

P

S

?

 

l�1

Y

k=0

M

a

k

(d

k

)

!

D(d

l

) =

 

l�1

Y

k=0

M

0

a

k

(d

k

)

!

D

0

(d

l

) (2)

for all delayed traces

d

0

a

0

�!d

1

a

1

�! : : :

a

l�1

�!d

l

:

The stated equations follow from this.

Theorem 5 There exists an algorithm that, given an n-dimensional representation

(C;D(x); fM

a

(x) : a 2 Eg)

of an observable � 2 Obs(E), outputs an m-dimensional representation (C

0

;D

0

(x); fM

0

a

(x) :

a 2 Eg) of �, which is minimal.

Proof {

1. Determine the space of solutions X to the system of all equations of the form:

X(

l�1

Y

k=0

M

a

k

(d

k

))D(d

k

) = 0:

If this space is nontrivial, use Lemma 20 to produce an n

0

-dimensional representation

of �, where n

0

< n.

2. Determine the space of solutions Y to the system of all equations of the form:

C(

l�1

Y

k=0

M

a

k

(d

k

))Y = 0

If this space is nontrivial, use Lemma 21 to produce an n

00

-dimensional representation

of �, where n

00

< n

0

.

Let

(C

00

;D

00

(x); fM

00

a

(x) : a 2 Eg)

denote the n

00

-dimensional representation resulting from step (2). Letting P

S

? and Q

S

?

denote the projection and embedding matrices constructed in performing step (2), and using

the property P

S

?M

0

a

(x)Q

S

?P

S

? = P

S

?M

0

a

(x), for all a

k

2 E and all nonnegative d

k

2 R

n

00

we have:

X(

l�1

Y

k=0

M

00

a

k

(d

k

))D

00

(d

k

) = X(

l�1

Y

k=0

P

S

?M

0

a

k

(d

k

)Q

S

?)P

S

?D

0

(d

k

)

= XP

S

? (

l�1

Y

k=0

M

0

a

k

(d

k

))D

0

(d

k

):
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Thus, if the system of equations:

X(

l�1

Y

k=0

M

00

a

k

(d

k

))D

00

(d

k

) = 0;

had a nontrivial solution X, then XP

S

? would satisfy:

(XP

S

? )(

l�1

Y

k=0

M

0

a

k

(d

k

))D

0

(d

k

) = 0:

Since the mapping fromR

n

00

to R

n

0

de�ned by multiplication on the right by P

S

? is injective

(recall that multiplication on the left by P

S

? is a projection), it follows that XP

S

? 6= 0 if

and only if X 6= 0. Since step (1) guarantees that we cannot have any XP

S

?
6= 0 satisfying

the above equations, it follows that step (2) does not introduce any additional possibility of

nontrivial solutions X to the system of the form (1). Since the n

00

-dimensional representation

resulting from step (2) thus satis�es the conditions of Lemma 16, it is minimal.

3.6 Example

To illustrate the minimization algorithm, we now apply it to the 8-dimensional representa-

tion of the observable B

A

E

A




T

obtained in Section 3.4, to obtain a minimal, 3-dimensional

representation for this same observable.

Recall the 8-dimensional representation from Section 3.4:

C




T

= ( 0 1 0 0 0 0 0 0 ) D(x) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

0

1

0

0

0

1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

M

a

(x) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0

dp

x+d

0

0 0 0 0 0 0

dp

(x+d)

2

dp

x+d

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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M

t

(x) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

d(1�p)

x+d

0 0 0 0 0 0 0

d(1�p)

(x+d)

2

d(1�p)

x+d

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

We �rst consider the system of equations:

X(

l�1

Y

k=0

M

a

k

(d

k

))D(d

k

) = 0:

We begin by observing that the set:

D

0

= fD

1

g

where

D

1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

0

1

0

0

0

1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

is a basis for the orthogonal complement S

?

0

of

S

0

= fX 2 R

8

: XD(x) = 0; all x 2 Rg:

To obtain S

1

, we solve simultaneously:

XD

1

= 0; XM

a

(x)D

1

= 0; XM

t

(x)D

1

;

that is,

X

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

0

1

0

0

0

1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= 0; X

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

dp

x+d

dp

(x+d)

2

0

0

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= 0; X

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

0

0

0

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= 0:
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Obviously, the third equation is vacuous. In view of the fact that the two components of the

vector in the second equation are independent rational functions, a basis for the orthogonal

complement of the space S

1

is as follows:

D

1

= fD

1

;D

2

;D

3

g;

where

D

2

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

0

0

0

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; D

3

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

1

0

0

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

We now proceed to solve simultaneously the system of identities:

XD

1

= 0; XD

2

= 0; XD

3

= 0;

XM

a

(x)D

1

= 0; XM

a

(x)D

2

= 0; XM

a

(x)D

3

= 0;

XM

t

(x)D

1

= 0; XM

t

(x)D

2

= 0; XM

t

(x)D

3

= 0:

The equations involving D

1

are the same as we had at the previous stage. The �rst of the

M

t

(x) equations is vacuous, as are the second two of the M

a

(x) equations. The remaining

new equations are:

X

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

d(1�p)

x+d

d(1�p)

(x+d)

2

0

0

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= 0; X

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

d(1�p)

x+d

0

0

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= 0:

It is easily seen that the solution space of these equations is the same as the space S

1

, so

that a �xed point S has been reached, which is the (5-dimensional) space of solutions of the

original system. A basis for the complement of S

?

is D

1

, which after orthonormalization
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gives:

D

0

1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

0

p

2

2

0

0

0

p

2

2

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; D

0

2

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

0

0

0

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; D

0

3

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

1

0

0

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

The projection and embedding matrices P

S

? and Q

S

? are as follows:

P

S

? =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1 0

0 0 1

p

2

2

0 0

0 0 0

0 0 0

0 0 0

p

2

2

0 0

0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Q

S

? =

0

B

@

0 0

p

2

2

0 0 0

p

2

2

0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1

C

A

:

We now compute a new, three-dimensional representation:

C

0

= CP = ( 0 0 1 ) D

0

= QD =

0

B

@

p

2

0

0

1

C

A

M

0

a

(x) = QM

a

(x)P =

0

B

B

@

0 0 0

p

2

2

dp

x+d

0 0

p

2

2

dp

(x+d)

2

0 0

1

C

C

A

M

0

t

(x) = QM

t

(x)P =

0

B

B

@

0 0 0

0

d(1�p)

x+d

0

0

d(1�p)

(x+d)

2

d(1�p)

x+d

1

C

C

A

:

If we attempt further reduction on the above representation, by solving the system:

C

0

(

l�1

Y

k=0

M

0

a

k

(d

k

))Y = 0;

we �nd that there are no nontrivial solutions. Thus, we have found a minimal representation

for the originally given observable.
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