
A Calculus of Dataow Networks

(Extended Abstract)

Eugene W. Stark

�

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794 USA

y

Abstract

Dataow networks are a paradigm for concurrent

computation in which a collection of concurrently and

asynchronously executing processes communicate by

sending data values over FIFO communication chan-

nels. In this paper, we de�ne a CCS-style calculus

of dataow networks with a standard structural op-

erational semantics. A version of weak bisimulation

equivalence, called \bu�er bisimilarity," is de�ned for

this calculus, and its equational theory is investigated.

The main result is a completeness theorem for proving

equations valid under bu�er bisimilarity. The axioms

have a familiar, category-theoretic avor, in which a

dataow process with m input ports and n output ports

is represented by an arrow from m to n in a category

whose objects are the �nite ordinals.

1 Introduction

Dataow networks, originally introduced by Kahn

[4], are a paradigm for concurrent computation in

which a collection of concurrently and asynchronously

executing processes communicate by sending data val-

ues over FIFO communication channels. In his origi-

nal paper, and in a subsequent paper with MacQueen

[5], Kahn considered determinate networks, in which

processes are expressed in a programming language re-

stricted in such a way that processes compute func-

tions, from the history of values arriving on their input

ports to the history of values emitted at their output

ports. Kahn made the insightful observation that net-

works of such processes also compute functions, and

that the function computed by a network is related to

the functions computed by their component processes

by an elegant least-�xed-point principle.

Although dataow networks were one of the �rst

paradigms for concurrent computation to be studied,

recent work on them has diverged signi�cantly from

mainstream e�orts in concurrency theory, for example

�

Research supported in part by NSF Grant CCR-8902215.

y

E-mail address: stark@cs.sunysb.edu (Internet)

those centered around CCS [8] and ACP [1]. Studies

of dataow networks, including my own, have tended

to eschew concrete syntax in favor of a more abstract

semantic approach, and this has often made the re-

sults of these studies hard to interpret in terms of con-

crete computational intuition. Perhaps one reason for

the semantic approach is that much of the research on

dataow networks has been motivated by the obser-

vation, due to Brock and Ackerman [2], that Kahn's

�xed-point principle does not extend in a naive way

to indeterminate processes, which are capable of mak-

ing unpredictable choices during a computation. Since

Kahn's principle is a direct application of ideas from

denotational semantics, it has perhaps seemed natu-

ral that investigations of how to extend this principle

to indeterminate networks should be performed in a

similar abstract semantic context. In my own stud-

ies of these issues [7, 11, 12, 14], I have consciously

avoided committing to a particular syntax until I was

con�dent that the syntax would clarify the underlying

mathematical structure, rather than obscuring it amid

a mass of irrelevant detail. I now feel con�dent enough

to propose a particular syntactic formulation.

The purpose of this paper is therefore to take steps

to bring the theory of dataow networks back into the

mainstream of work on concurrency theory, and in do-

ing so, to show how my previous work �ts into the

mainstream. This will be accomplished by de�ning

a CCS-style calculus for dataow networks, complete

with a structural operational semantics [10] and an

equivalence based on bisimulation [9], and by giving a

sound and complete axiomatization of this equivalence.

A novel feature of the calculus is the way in which

\bu�ers" are incorporated into each of the primitive

processes and operations, to permit a smooth handling

of asynchronous communication. The formulation has

a decidedly category-theoretic avor, in which we think

of a dataow process or network f with m input ports

and n output ports as an \arrow" f : m! n.

Similarly, a transition in which a process f performs

some computational step and becomes process g is

thought of as an \arrow of processes" f=)g. We

are concerned here with several types of operations for

forming new processes from old ones: input and output

bu�ering, in which a bu�er for data values is attached

either to the input or output of a process, sequential

composition, in which the output ports of a process

f : m ! p are connected to the corresponding input

ports of a process g : p ! n, resulting in a process

f ; g : m ! n, parallel composition, in which a process

f : m! n is juxtaposed with a process f

0

: m

0

! n

0

to

yield a process f
 f

0

: m+m

0

! n+ n

0

, and feedback,

in which the \rightmost p output ports" of a process

f : m + p! n+ p are connected to the corresponding

\rightmost p input ports" of the same process, result-

ing in a process f	

p

: m ! n. These process-forming

operations can be thought of as axioms and inference

rules for inferring processes. Similarly, the structural

operational semantics can be thought of as a collection

of axioms and rules for inferring transitions. This point

of view is similar to that applied to the �-calculus in

[6]. The category-theoretic avor extends to the equa-

tional axioms, a number of which are familiar category-

theoretic properties.

2 Dataow Calculus

In this section, we de�ne a system that formalizes

the intuitive conception of dataow networks as collec-

tions of concurrent processes communicating by pass-

ing data values over FIFO channels. The formal sys-

tem, called dataow calculus, comprises three di�erent

kinds of entities:

1. For n 2 Ord (the set of �nite ordinals) a monoid

Buf(n) of bu�ers of width n. These are de�ned

below.

2. A set Proc of processes, equipped with functions

iwd : Proc ! Ord and owd : Proc ! Ord that

map each process to its input width and output

width, respectively. We write Proc(m;n) to denote

the set of processes with input widthm and output

width n.

3. A set Trans of transitions, equipped with func-

tions src : Trans ! Proc and trg : Trans ! Proc

that map each transition to its source and target

processes, respectively.

A bu�er is a function � : [n]!N

�

, where [n] is the

set f0; 1; 2; . . .; n� 1g, and N

�

is the monoid of �nite

strings of natural numbers. The number n is called the

width of the bu�er �, and we use Buf(n) to denote the

set of all bu�ers of width n. (Intuitively, one should

think of one of our bu�ers of width n as consisting

of n ordinary FIFO bu�ers placed side-by-side.) We

denote particular elements of Buf(n) by expresssions

of the form

h0 : s

0

; 1 : s

1

; . . . ; (n� 1) : s

n�1

i

where s

0

, s

1

, . . ., s

n�1

are elements of N

�

. Such an ex-

pression stands for the bu�er � 2 Buf(n) whose value

on i is s

i

. When the width of the bu�er is clear from

the context, we feel free to omit some of the i : s pairs,

with the understanding that we mean the omitted pair

to be i : �, where � is the empty string. We also re-

gard Buf(n) as included in Buf(n

0

) for all n

0

� n, un-

der the natural \extend with �" map. Bu�ers of the

same width can be concatenated componentwise, mak-

ing each set Buf(n) into a monoid. We denote bu�er

concatenation simply by juxtaposition. Besides this

\vertical composition" of bu�ers, there is also a \hor-

izontal composition," in which a bu�er of width m is

placed next to a bu�er of width n to obtain a bu�er

of width m + n. We denote this kind of composition

(which is clearly associative, and has the bu�er hi of

width 0 as a unit) by
.

Processes are terms that are built up from certain

basic standard processes and basic nonstandard pro-

cesses, using certain process-forming operations, all

of which are described in more detail below. We

write f : m ! n to assert that f is a process with

iwd(f) = m and owd(f) = n.

A transition is an expression � of one of the three

forms: f

i?v

=)g, f

j!v

=)g, or f

k#v

=)g, where f and g are

processes with iwd(f) = iwd(g) = m and owd(f) =

owd(g) = n, the values i, j, and k are elements of

[m], [n], and Ord, respectively, and v 2 N is a data

value. In each case, src(�) = f and trg(�) = g. A

transition is called an input transition, output transi-

tion, or an internal transition, respectively, according

to which of the three forms it has. We call the particu-

lar designation (input, output, or internal) assigned to

a transition its mode, we call the bu�er hi : vi, hj : vi,

or hk : vi associated, respectively, with a transition the

token associated with the transition, and we call the

ordinal i, j, or k the port of the transition. We write

simply � : f

?

=)g, � : f

!

=)g, or � : f

#

=)g when we

are interested only in the mode of a transition and not

in its token. When we are not even interested in the

mode of the transition �, we merely write � : f=)g.

Transitions are inferred from transition axioms using

transition inference rules, as detailed below. The tran-

sition axioms and inference rules amount to an SOS

(Structural Operational Semantics) de�nition of the

computational behavior of processes.

2

Basic Standard Processes

Dataow calculus contains the following basic stan-

dard processes for all n 2 Ord and �; �

0

2 Buf(n):

� An identity process 1

n

f�g : n! n for all n 2 Ord

and all � 2 Buf(n).

� A terminator process t

n

: n! 0 for all n 2 Ord.

� A generator process g

n

f�g : 0! n for all n 2 Ord

and all � 2 Buf(n).

� A duplicator process d

n

f�; �

0

g : n ! n + n for all

n 2 Ord and all �; �

0

2 Buf(n) .

� An exchange process s

m;n

f�; �g : m + n ! n +m

for all m;n 2 Ord, all � 2 Buf(m) and all � 2

Buf(n).

These processes are used to perform the \wiring" in

dataow networks, and, in the case of the generator

processes, to serve as a source of data values. The

example process in the next section should serve to

clarify these issues.

Basic Nonstandard Processes

A particular dataow calculus may have an arbi-

trary set (possibly empty) of basic nonstandard pro-

cesses, about which we assume nothing other than that

each has a speci�ed input and output width.

Process-Forming Operations

Dataow calculus has the following process-forming

operations:

� If f : m ! n and � 2 Buf(m), then there is a

process �f : m ! n, called the input bu�ering of

f by �.

� If f : m ! n and 2 Buf(n), then there is a

process f : m! n, called the output bu�ering of

f by .

� If f : m! p, g : p! n, and � 2 Buf(p) then there

is a process ff�gg : m ! n, called the bu�ered

sequential composition of f and g with �.

� If f : m ! n and f

0

: m

0

! n

0

, then there is a

process f
f

0

: m+m

0

! n+n

0

, called the parallel

composition of f and f

0

.

� If f : m + p ! n + p, and � 2 Buf(p) then there

is a process f	

p

f�g : m ! n, called the bu�ered

feedback of f with �.

We assume there are no processes other than the

ones that can be built from basic standard processes

and basic nonstandard processes, using the process-

forming operations.

1

n

f�g

j?v

=) 1

n

fhj : vi�g

1

n

f�hj : vig

j!v

=) 1

n

f�g

t

n

j?v

=) t

n

g

n

f�hj : vig

j!v

=) g

n

fhj : vi�g

d

n

f�; �

0

g

j?v

=) d

n

fhj : vi�; hj : vi�

0

g

d

n

f�hj : vi; �

0

g

j!v

=) d

n

f�; �

0

g

d

n

f�; �

0

hj : vig

(j+n)!v

=) d

n

f�; �

0

g

s

m;n

f�; �g

i?v

=) s

m;n

f�; hi : vi�g

s

m;n

f�; �g

(j+m)?v

=) s

m;n

fhj : vi�; �g

s

m;n

f�; �hi : vig

(i+n)!v

=) s

m;n

f�; �g

s

m;n

f�hj : vi; �g

j!v

=) s

m;n

f�; �g;

Figure 1: Transition Axioms for Basic Standard Pro-

cesses

Since process expressions can be hard to read, it

is convenient to introduce some simplifying abbrevia-

tions. Speci�cally,

� 1

n

, 0

n

, d

n

, and s

m;n

abbreviate 1

n

fhig, g

n

fhig,

d

n

fhi; hig, and s

m;n

fhi; hig, respectively.

� f ; g abbreviates ffhigg.

� f	

p

abbreviates f	

p

fhig.

As a consequence of the semantics we give below for

g

n

fhig, the process 0

n

, which has no input ports and n

output ports, is a process that never emits any output

data whatsoever.

Transition Axioms and Inference Rules

Dataow calculus contains the transition axioms for

the basic standard processes shown in Figure 1, where

in each case we assume that i 2 [m], j 2 [n], and that

the bu�ers all have appropriate widths. In addition,

each of the process-forming operations has an associ-

ated collection of transition axioms and inference rules.

These are listed in Figure 2.

A particular dataow calculus may also contain ad-

ditional transition axioms, but no other inference rules.

We call the additional axioms nonstandard transition

axioms, and we require that the set of all such axioms

satisfy the following conditions:

Format: The source and target of each nonstandard

transition axiom must both be basic nonstandard

processes.

Disambiguation: Suppose � : f=)g and �

0

: f=)g

0

are nonstandard transition axioms having the

same mode and token. Then g = g

0

.

3

Input Bu�ering Axiom and Rules:

�f

i?v

=) (hi : vi�)f

f

i?v

=)f

0

(�hi : vi)f

i#v

=)�f

0

f

k#v

=)f

0

�f

(k+m)#v

=) �f

0

f

i!v

=)f

0

�f

i!v

=)�f

0

Output Bu�ering Axiom and Rules:

f

i?v

=)f

0

f

i?v

=)f

0

f

k#v

=)f

0

f

(k+n)#v

=) f

0

f

j!v

=)f

0

f

j#v

=)f

0

(hj : vi)

f(hj : vi)

j!v

=) f

Sequential Composition Rules:

f

i?v

=)f

0

ff�gg

i?v

=)f

0

f�gg

f

k#v

=)f

0

ff�gg

(2k+2p)#v

=) f

0

f�gg

f

k!v

=)f

0

ff�gg

(k+p)#v

=) f

0

fhk : vi�gg

g

j!v

=)g

0

ff�gg

j!v

=)ff�gg

0

g

k#v

=)g

0

ff�gg

(2k+2p+1)#v

=) ff�gg

0

g

k?v

=)g

0

ff�hk : vigg

k#v

=)ff�gg

0

Parallel Composition Rules:

f

i?v

=)g

f
 f

0

i?v

=)g
 f

0

f

k#v

=)g

f
 f

0

(2k)#v

=) g
 f

0

f

j!v

=)g

f
 f

0

j!v

=)g
 f

0

f

0

i?v

=)g

0

f
 f

0

(i+m)?v

=) f
 g

0

f

0

k#v

=)g

0

f
 f

0

(2k+1)#v

=) f
 g

0

f

0

j!v

=)g

0

f
 f

0

(j+n)!v

=) f
 g

0

Feedback Rules:

f

i?v

=)g i < m

f	

p

f�g

i?v

=)g	

p

f�g

f

k#v

=)g

f	

p

f�g

(k+2p)#v

=) g	

p

f�g

f

j!v

=)g j < n

f	

p

f�g

j!v

=)g	

p

f�g

f

(k+m)?v

=) g k < p

f	

p

f�hk : vig

k#v

=)g	

p

f�g

f

(k+n)!v

=) g k < p

f	

p

f�g

(k+p)#v

=) g	

p

fhk : vi�g

Figure 2: Transition Inference Rules

4

A transition is called standard if can be inferred with-

out making use of any nonstandard transition axioms.

The purpose of the Disambiguation condition, com-

bined with the way in which the transition rules of

Figure 2 assign ports to internal transitions, is to

make sure that each transition in a dataow calcu-

lus is uniquely determined by its source process, its

mode, and its token. In addition, the tokens of inter-

nal transitions are used to de�ne a syntactic notion of

\independence" of transitions (see Section 6). We can

do away with the Disambiguation condition, as well as

the annotations of internal transitions, if we are willing

to systematically introduce the notion of \proof terms"

for transitions, so that each transition is uniquely de-

termined by its proof term, and so that independence is

determined by comparing proof terms. We do not fol-

low this somewhat more complicated approach in this

paper.

It will be useful to have names for various classes

of processes in a dataow calculus. A process is called

standard if it contains no basic nonstandard processes.

A process is feedback-free if it contains no occurrences

of a feedback operation. A process is called reticulate if

it is a standard process built up from processes 1fhig,

0, t, sfhi; hig, and dfhihig, using any of the process-

forming operations but feedback. A pure reticulate pro-

cess is one that is built up from 1fhig, 0, t, sfhi; hig,

and dfhi; hig, using ; and
 only.

Dataow calculi of particular interest to us are the

dataow calculi D(X) determined by taking a given

set X = ff; g; h; . . .g, equipped with functions iwd :

X ! Ord and owd : X ! Ord, as the basic non-

standard processes, and assuming no transition axioms

other than the standard ones mentioned above. We call

D(X) the generic dataow calculus associated with the

set X.

3 Example

Consider the process

(((0

1

h0 : 5i)
 1

1

); ((mfhigh0 : 7i);d

1

))	

1

in the dataow calculus whose basic nonstandard pro-

cesses are all mf�g : 2! 1, for � 2 Buf(1). This pro-

cess may be visualized as the dataow network shown

in Figure 3, in which processes are represented as poly-

gons, values in bu�ers as circles, and interconnections

as arrows.

Assume the following set of nonstandard transition

axioms:

mf�g

0?v

=) mfh0 : vi�g

mf�g

1?v

=) mfh0 : vi�g

mf�h0 : vig

0!v

=) mf�g:

��

��

��

��

6

6

6

66

�

�
S

S

J

J

J

J

J

J

d

1

0

1

1

1

mfhig

7

5

Figure 3: Example Dataow Network

These axioms imply that mfhig behaves as a \merge"

process, which takes the sequences of values arriving

on its two input ports, and shu�es them together in

an indeterminate order to produce a single output se-

quence.

From the nonstandard transition axioms, plus the

other axioms and rules for dataow calculus, we can

infer the transition sequence shown in Figure 4. In this

computation, the data value 5 �rst passes through the

merge process and then the value 7 passes the duplica-

tor, followed by the value 5. One copy of the value 7 is

output, and the other copy makes its way around the

feedback loop, eventually passing through the merge

process and duplicator. In the last step, one of the

copies of the value 5 is output. By tracing through

this transition sequence, one can see how in dataow

calculus, the standard processes are used for \wiring,"

and how the calculus models the ow of data values

through a network.

4 Process Equivalence

If f : m ! n and g : m ! n are processes in a

dataow calculus C, then an internal computation from

f to g is a sequence of k transitions (where k � 0):

h

0

#

=)h

1

#

=) . . .

#

=)h

k

;

with h

0

= f and h

k

= g. We write f

#

�

=)g to assert the

existence of an internal computation from f to g.

A simulation on Proc(m;n) is a binary relation R

on Proc(m;n) such that whenever f R f

0

, then the

following three conditions hold:

5

(((0

1

h0 : 5i)
 1

1

); ((mfhigh0 : 7i);d

1

))	

1

#

=) ((0

1

hi
 1

1

)fh0 : 5ig((mfhigh0 : 7i);d

1

))	

1

#

=) ((0

1

hi
 1

1

); ((mfh0 : 5igh0 : 7i);d

1

))	

1

#

=) ((0

1

hi
 1

1

); ((mfhigh0 : 57i);d

1

))	

1

#

=) ((0

1

hi
 1

1

); ((mfhigh0 : 5i)fh0 : 7igd

1

))	

1

#

=) ((0

1

hi
 1

1

); ((mfhighi)fh0 : 57igd

1

))	

1

#

=) ((0

1

hi
 1

1

); ((mfhighi)fh0 : 5igd

1

fh0 : 7i; h0 : 7ig))	

1

#

=) ((0

1

hi
 1

1

); ((mfhighi);d

1

fh0 : 57i; h0 : 57ig))	

1

0!7

=) ((0

1

hi
 1

1

); ((mfhighi);d

1

fh0 : 5i; h0 : 57ig))	

1

#

=) ((0

1

hi
 1

1

); ((mfhighi);d

1

fh0 : 5i; h0 : 5ig))	

1

fh0 : 7ig

#

=) ((0

1

hi
 1

1

fh0 : 7ig); ((mfhighi);d

1

fh0 : 5i; h0 : 5ig))	

1

#

=) ((0

1

hi
 1

1

)fh0 : 7ig((mfhighi);d

1

fh0 : 5i; h0 : 5ig))	

1

#

=) ((0

1

hi
 1

1

); ((mfh0 : 7ighi);d

1

fh0 : 5i; h0 : 5ig))	

1

#

=) ((0

1

hi
 1

1

); ((mfhigh0 : 7i);d

1

fh0 : 5i; h0 : 5ig))	

1

#

=) ((0

1

hi
 1

1

); ((mfhighi)fh0 : 7igd

1

fh0 : 5i; h0 : 5ig))	

1

#

=) ((0

1

hi
 1

1

); ((mfhighi);d

1

fh0 : 75i; h0 : 75ig))	

1

0!5

=) ((0

1

hi
 1

1

); ((mfhighi);d

1

fh0 : 7i; h0 : 75ig))	

1

:

Figure 4: Transition Sequence for Example Process

1. If f

i?v

=)g, then there exists a computation of the

following form:

f

0

#

�

=)x

i?v

=)y

#

�

=)g

0

such that g R g

0

.

2. If f

j!v

=)g, then there exists a computation of the

following form:

f

0

#

�

=)x

j!v

=)y

#

�

=)g

0

such that g R g

0

.

3. If f

#

=)g, then there exists a computation of the

following form:

f

0

#

�

=)g

0

such that g R g

0

.

A simulation whose converse is also a simulation is

called a bisimulation. We say that f and g are bisim-

ilar, and we write f � g, if there exists a bisimulation

R such that f R g. It can be shown that this de�ni-

tion of bisimulation has the usual properties, including

the fact that the bisimilarity relation is itself a bisim-

ulation, and that bisimilarity is a congruence with re-

spect to the process-forming operations. It can also be

shown that if f

#

=)g is a standard internal transition,

then f � g.

Although bisimilarity is an interesting equivalence,

we do not in general have hif � f or fhi � f , if we

allow arbitrary sets of transition axioms for nonstan-

dard processes. Intuitively, the reason is that f might

not have any computation to correspond to an inter-

nal transition fhi

#

=)f

0

hj : vi, or to an input transition

hif

i?v

=)hi : vif . Since we wish to have an equivalence

that places all of f , hif , and fhi in the same equiv-

alence class, we modify bisimilarity somewhat. For-

mally, de�ne the bu�er bisimilarity relation

b

� by:

f

b

� g i� hi(fhi) � hi(ghi):

It follows from the fact that bisimilarity is a congru-

ence that bu�er bisimilarity is a coarser relation than

bisimilarity. Moreover, it can be shown that bu�er

bisimilarity is also a congruence, and that hif

b

� f and

f

b

� fhi hold.

5 Equational Laws

Our main result is a proof-theoretic characterization

of the equational theory of bu�er bisimilarity. To state

the result precisely, we have to de�ne what it means

for an equation with variables to be \valid" in dataow

6

calculus. Formally, de�ne an equation with variables in

X to be a pair (f; g) of processes in the generic dataow

calculus D(X). Usually, we denote an equation by the

expression f = g instead of the tuple notation (f; g).

If C is any dataow calculus, then an interpretation of

X in C is a function I : X ! C that preserves input

and output width. Such a function extends inductively

to a mapping from all of D(X) to C. We say that an

equation f = g with variables in X is true under an

interpretation I : D(X) ! C, and we write j=

I

f = g,

if I(f)

b

� I(g) holds in C. We say that f = g is valid,

and we write j= f = g, if j=

I

f = g holds for all

interpretations.

We can now give a long list of valid equations. Fig-

ures 5{8 list four sets of equational laws:

� extraction laws.

� categorical laws.

� bu�ering laws.

� feedback laws.

In each case, we assume that the widths of the pro-

cesses and bu�ers involved are such that both sides

of the equation make sense and have the same input

and output widths. The laws are not all independent:

(Zer1)-(Zer3) are provable using the feedback laws, and

in addition it is conceivable that the feedback laws are

not all independent.

The extraction laws in Figure 5 show how we can

extract nonempty bu�ers from within basic standard

processes and from sequential composition and feed-

back. These laws show that for the purposes of study-

ing the equational theory most of the time no gen-

erality is lost by using only basic standard processes

with empty bu�ers, and by working with f ; g and f	

p

,

rather than the more general versions. The only ex-

ception is the generator process g

n

f�g, from which a

nonempty bu�er � cannot be extracted. However, even

though bu�ers are almost superuous for the equa-

tional theory, they are absolutely essential to obtaining

a simple operational semantics, and this is why we can-

not do away with them entirely.

Many of the laws in Figures 6 and 7 are familiar.

The laws (Cat1)-(Cat3) are the axioms for a cate-

gory. The laws (Trm1)-(Trm2) state that the termi-

nator processes t

n

are in fact terminal arrows, with 0

as the terminal object. The laws (Mon1)-(Mon4) and

(Sym1)-(Sym4) are the classical coherence conditions

for a symmetric monoidal category, in the strict case

where the the associativity isomorphisms are all iden-

tities. The laws (Com1)-(Com4) state that each object

n has a cocommutative comonoid structure, with the

terminator processes t

n

: n ! 0 as the counit and the

duplicator processes d

n

: n! n+n as the comultiplica-

tion. Law (Com5) is an additional coherence condition

that relates the comultiplications at di�erent objects

1

Bu�ering laws (Buf1)-(Buf2) state that for each ob-

ject m, the input bu�ering operation is a left action of

the monoid Buf(m) on the hom-set of processes from

m to n. Laws (Buf3)-(Buf4) make the dual statement

about output bu�ering. Law (Buf5) shows that input

and output bu�ering are related to each other and to

sequential composition in a kind of bimodule-like fash-

ion. Laws (Buf6) and (Buf7) show how to distribute

input and output bu�ering over parallel composition,

and (Buf8) shows how the duplicator process d

n

be-

haves with respect to bu�ering.

The feedback laws are not as easily characterized.

Laws (Fbk1) and (Fbk2) state that feeding back mul-

tiple outputs to inputs can be achieved by feeding back

one output at a time to an input. Law (Fbk3) shows

that the generator process g

n

f�g is already de�nable

from the duplicator d

n

, input bu�ering, and feedback.

(In spite of this, we include generators as basic stan-

dard processes because they play a useful role in the

completeness proof.) Laws (Fbk4)-(Fbk6) show how to

push sequential compositions in, out, and around feed-

back loops, and (Fbk7) is a similar type of property

for parallel composition. Useless feedback loops can

be eliminated with (Fbk8). Law (Fbk9), which is sim-

ilar in spirit to (Buf8), shows how generator processes

behave with respect to duplicators. Finally, (Fbk10)

is a schema that gives some basic equalities between

generators that cannot be proved from the the other

laws. In it, �

i

and �

j

denote the i-fold and j-fold con-

catenation, respectively, of the bu�er � with itself.

Our main result is the following:

Theorem 1 The laws listed in Figures 5-8 are sound

and complete for proving valid equations of dataow

calculus.

It follows from the technique used in the proof that

the validity problem for dataow calculus is decidable.

The proof of Theorem 1 is extremely long|much

too long to present here. For this reason, in the re-

mainder of this paper we simply sketch the main ideas

of the proof, pointing out along the way a number of

interesting properties of dataow calculus on which it

relies.

1

I wish to thank Barry Jay for helpful discussions concern-

ing the independence of axiom (Com5), and the relationship of

this issue to some comments made by Carboni and Walters [3]

concerning results of T. Fox.

7

(Ext1) 1

n

f�g = 1

n

�.

(Ext2) d

n

f�; �

0

g = d

n

(�
 �

0

).

(Ext3) s

m;n

f�; �g = s

m;n

(�
 �).

(Ext4) ff�gg = f ; (�g) = (f�); g.

(Ext5) (f	

p

f�g) = (f(
 �))	

p

.

Figure 5: Extraction Laws

(Cat1) 1

m

; f = f .

(Cat2) f ;1

n

= f .

(Cat3) f ; (g;h) = (f ; g);h.

(Trm1) t

0

= 1

0

.

(Trm2) f ; t

n

= t

m

.

(Mon1) 1

m+n

= 1

m

 1

n

.

(Mon2) f
 1

0

= f .

(Mon3) (f
 g)
 h = f
 (g
 h).

(Mon4) (f
 f

0

); (g
 g

0

) = (f ; g)
 (f

0

; g

0

).

(Sym1) s

n;0

= 1

n

.

(Sym2) s

m;n

; s

n;m

= 1

m+n

.

(Sym3) (f
 f

0

); s

n;n

0

= s

m;m

0

; (f

0

 f),

if f : m! n and f

0

: m

0

! n

0

.

(Sym4) (1

m

 s

n;p

); (s

m;p

 1

n

) = s

m+n;p

.

(Com1) d

n

; (1

n

 t

n

) = 1

n

.

(Com2) d

n

; (t

n

 1

n

) = 1

n

.

(Com3) d

n

; (1

n

 d

n

) = d

n

; (d

n

 1

n

).

(Com4) d

n

; s

n;n

= d

n

.

(Com5) (d

m

 d

n

); (1

m

 s

m;n

 1

n

) = d

m+n

.

(Zer1) 0

m+n

= 0

m

 0

n

.

(Zer2) 0

m+n

; s

m;n

= 0

n+m

.

(Zer3) 0

n

;d

n

= 0

n+n

.

Figure 6: Categorical Laws

(Buf1) hif = f .

(Buf2) �

0

(�f) = (�

0

�)f .

(Buf3) fhi = f .

(Buf4) (f)

0

= f(

0

).

(Buf5) (f�); g = f ; (�g).

(Buf6) (�
 �

0

)(f
 f

0

) = (�f)
 (�

0

f

0

).

(Buf7) (f)
 (f

0

0

) = (f
 f

0

)(

0

).

(Buf8) �d

n

= d

n

(�
 �).

Figure 7: Bu�ering Laws

(Fbk1) f	

0

= f .

(Fbk2) f	

p+q

= (f	

p

)	

q

.

(Fbk3) (�d

n

)	

n

= g

n

f�g.

(Fbk4) f ; (g	

p

) = ((f
 1

p

); g)	

p

.

(Fbk5) (f	

p

); g = (f ; (g
 1

p

))	

p

.

(Fbk6) (f ; (1

n

 g))	

p

= ((1

m

 g); f)	

q

,

if f : m + p! n+ q and g : q! p.

(Fbk7) f
 (g	

p

) = (f
 g)	

p

.

(Fbk8) ((1

m+p

f); s

m;p+n

)	

m

= (f
1

p

); s

n;p

,

if f : m! n.

(Fbk9) (�d

n

)	

n

;d

n

= (�d

n

)	

n

 (�d

n

)	

n

.

(Fbk10) (�

i

d

n

)	

n

= (�

j

d

n

)	

n

,

for all i; j > 0.

Figure 8: Feedback Laws

8

6 Sketch of the Proof

The soundness portion of the proof is accomplished

primarily by exhibiting the required bisimulations. All

the bisimulations are constructed in the obvious way,

but the veri�cation is tedious due to the number of

transition rules. The proof is greatly facilitated by

the fact that only the contents of bu�ers change as

processes perform transitions|in particular processes

do not change their syntactic structure.

The overall structure of the completeness proof is in

two parts. The �rst part of the proof is to show that

the equational laws listed in Figures 5-8 are su�cient

to prove an arbitrary process equal to a \normal form."

The normal form we use for a process f : m ! n has

the following structure:

(((1

m

 v); (h; g)	

p

f�g);

where v : p ! q is a parallel composition v

0

 v

1

. . .
 v

s

of the variables occurring in f , process h :

m+q ! r is a pure reticulate process, and g : r! n+p

is constructed from basic standard processes 1

1

and

g

1

f�g using parallel composition only. In addition, a

normal form must satisfy a technical condition, which

says, informally, \every variable has some data path to

an external output."

To show that an arbitrary process is provably equal

to a normal form requires a substantial amount of

work. A major portion of the work involves looking

at the subclass of pure reticulate processes. Intuitively,

we show that two pure reticulate processes are provably

equal i� they \de�ne the same input/output connec-

tions." More formally, we de�ne the connection func-

tion of a reticulate f : m! n to be the partial function

Fun

f

: [n]! [m] (note the contravariance) de�ned in-

ductively as follows:

� Fun

1

n

= 1

n

: [n]! [n], the (total) identity func-

tion.

� Fun

t

n

= ; : [0]! [n], the empty partial function.

� Fun

0

n

= ; : [n]! [0], the empty partial function.

� Fun

d

n

: [n+ n]! [n] is de�ned by:

Fun

d

n

(i) =

�

i; if 0 � i < n;

i � n; otherwise:

� Fun

s

m;n

: [m + n]! [n+m] is de�ned by:

Fun

s

m;n

(i) =

�

i+ n; if 0 � i < m;

i�m; otherwise:

� Fun

�f

= Fun

f

and Fun

f

= Fun

f

.

� Fun

f ;g

= Fun

f

� Fun

g

.

� If f : m ! n and f : m

0

! n

0

, then Fun

f
f

0

:

[n+ n

0

]! [m+m

0

] is de�ned by:

Fun

f
f

0

(i) =

�

Fun

f

(i); if 0 � i < m;

Fun

f

0

(i �m) + n; otherwise:

Intuitively, Fun

f

(j) = i i� the process f transmits to

its jth output all data arriving on its ith input. This

intuition is validated for our operational semantics by

de�ning the input/output relation of f to be the rela-

tion Rel

f

� Buf(m) � Buf(n) consisting of all pairs

(�;) such that there exists an internal computation

of the form:

�((hif)hi)

#

�

=)hi(f

0

);

and then establishing that Fun

f

and Rel

f

correspond

in a natural way. We also show that bu�er bisimilar

processes have identical input/output relations. We

prove the following completeness result for the class of

pure reticulate processes:

Lemma 1 For pure reticulate processes f; f

0

: m !

n, we have Fun

f

= Fun

f

0

i� the equation f = f

0

is

provable from the categorical laws.

This is accomplished by considering subclasses of

\permutative," \duplicative," \contractive," and \ex-

pansive" processes (containing, respectively, processes

s, d, t, and 0, together with identity processes 1),

proving normal form and completeness results for each

class, and then combining these results using lemmas

that show how the various classes commute with each

other.

Next, the completeness result for pure reticulate

processes is extended to the full class of reticulate pro-

cesses. This is done by de�ning a notion of the bu�er

contents Buf

f

2 Buf(n) of a process f in an inductive

fashion analogous to the de�nition of Fun

f

, and then

proving:

Lemma 2 For reticulate processes f; f

0

: m ! n, we

have Fun

f

= Fun

f

0

and Buf

f

= Buf

f

0

i� the equation

f = f

0

is provable from the categorical laws and the

bu�ering laws.

This result is then extended once again, to the class

of all feedback-free standard processes. For this, we ex-

tend the notion Buf

f

to apply to generative processes,

whose \bu�er contents" can be in�nite. For this re-

sult, we need to make use of the extraction laws and

the feedback laws (Fbk3), (Fbk9), and (Fbk10).

To extend the completeness result for feedback-free

standard processes to the class of all standard pro-

cesses, we use a technique of \feedback elimination."

9

Actually, we don't eliminate feedback completely, we

merely show how feedback loops in standard processes

can be made very small and ultimately hidden inside

generative processes g

1

f�g. This technique allows us

to show that any standard process can be proved equal

to one of the form (h; g), where h is a pure reticulate

process, and g is constructed from 1

1

and g

1

f�g using

parallel composition only. The feedback elimination

technique requires the following expressiveness result

for pure reticulate processes:

Lemma 3 Suppose � : [n]! [m] is a partial function.

Then there exists a pure reticulate process f : m ! n

such that Fun

f

= �.

We then have:

Lemma 4 For standard processes f; f

0

: m ! n, we

have Fun

f

= Fun

f

0

and Buf

f

= Buf

f

0

i� the equation

f = f

0

is provable from the full set of laws in Figures

5-8.

Finally, we admit nonstandard processes, and ob-

tain the general normal form result mentioned above.

The second main part of the completeness proof

consists of showing: (1) that if f and f

0

are normal

forms that are essentially identical (i.e. \identical up

to permutation of their variables"), then they are prov-

ably equal, and (2) that if f and f

0

are not essentially

identical, then there is an interpretation of their vari-

ables under which they have distinct input/output re-

lations, hence under which they are not bu�er bisimi-

lar. It follows from these two assertions that if normal

forms f and f

0

are bu�er bisimilar under all interpre-

tations, then they are provably equal. The proof of (1)

is reasonably straightforward, given our completeness

results for the class of standard processes and the ex-

pressiveness result for the class of pure reticulate pro-

cesses.

The proof of (2) is more di�cult. For it, we use

an interpretation of a standard form, in which each

variable is interpreted as a process that �rst makes

a certain indeterminate choice, and then subsequently

performs a \merging and tagging" function in which

arriving data values are tagged to indicate on which

input port they arrived, then merged into a single se-

quence, and then output on all output ports after tag-

ging once again to indicate the output port on which

they were emitted. The interpretation depends both

on the set X of variables appearing in f and f

0

and

also on the set D of data values appearing in them.

More precisely, suppose normal forms f : m ! n

and f

0

: m! n (in the generic dataow calculus D(X)

determined by a �nite set of process variables X) are

given. Let D be the set of all data values appearing

in bu�ers either in f or in f

0

. Let X

N

denote the

set X � N . We will use the notation x

a

to denote an

element (x; a) of X

N

. We construct a dataow cal-

culus S(X;D) having as its set of basic nonstandard

processes the disjoint union X +X

0

, where

X

0

= fx

a

f�g : x 2 X; a 2 N ; � 2 Buf(owd(x))g;

and x

a

f�g 2 X

0

has the same input width and the

same output width as x 2 X. Here each expression

x

a

f�g is to be regarded as a single symbol denoting a

basic nonstandard process, in the same way, for exam-

ple, that each expression 1

n

f�g is regarded as single

symbol denoting a basic standard process. We choose

nonstandard transition axioms that yield the following

behavior for a variable x : m

x

! n

x

in X:

1. Choose, in an indeterminate fashion, a value a as

an \ID." Then become the process x

a

f�

a

g, where

�

a

is a bu�er of width n

x

that contains an encoded

version of the value x

a

as its jth component, for

all j 2 n

x

. These values, which will be the �rst

to be output by x

a

f�

a

g, serve to announce the

indeterminate choice that was made, and also to

exercise all data paths leading from x

f

�

a

g.

2. The process x

a

f�

a

g then begins a tagging and

merging function, in which values arriving on in-

put port i are tagged by i and placed in the inter-

nal bu�er for eventual output on all output ports.

Interleaved with these transitions are the actual

output transitions, in which a value at the head

of the internal bu�er for output j is removed from

the bu�er, tagged by j, and output on port j.

The idea behind this interpretation is that data values

owing around the feedback loop will accumulate an

encoded history of the paths they take. When these

values reach an external output, some of the internal

network structure will become observable. The main

work in this part of the completeness proof is to show

that, under suitable conditions, in fact all the relevant

internal structure of a normal form can be made ob-

servable at the external outputs.

We comment briey on the role of the ID's in

this interpretation, which might otherwise seem some-

what mysterious. A signi�cant obstacle in trying to

construct an interpretation that distinguishes normal

forms f and f

0

that are not essentially identical is the

following: f and f

0

may have more than one occurrence

of each variable, but an interpretation has to assign

the same process to all occurrences of a variable. This

potentially limits our ability to discover the internal

structure of f and f

0

, because it might be hard to tell

10

apart values originating at two di�erent occurrences of

the same variable x. To get around this problem, we

interpret a variable x as a process that initially makes

an indeterminate selection of an ID a, to become a

process x

a

. The choice is announced on all outputs

as it is made. If all occurrences of variables choose

di�erent ID's, then distinguishing which values come

from which variables is very easy. Furthermore, if we

have the set of outputs produced in all possible com-

putations of f and f

0

, then it is possible to distinguish

those in which all variables chose di�erent ID's from

those in which some variables chose the same ID's. We

may then concern ourselves only with the former type

of computations.

To give the nonstandard transition axioms for

S(X;D) we must be more speci�c about how tagging

is performed. Since the set D is �nite, but the set N

is countably in�nite, using standard coding techniques

we can assign:

1. a value � 2 N ,

2. to each variable x 2 X a value pxq 2 N ,

3. to each x

a

2 X

N

a value px

a

q 2 N ,

in such a way that the sets D, f�g, fpxq : x 2 Xg, and

fpx

a

q : x

a

2 X

N

g are pairwise disjoint. Moreover, we

can choose a \pairing function" that takes each pair

(i; v), where i 2 Ord and v 2 N to a tagged value

(i :: v) 2 N , together with partial functions

val : N ! D + f�g+X +X

N

tags : N ! Ord

�

;

in such a way that the set f(i :: v) : i 2 Ord and v 2 Ng

is disjoint from each of D, f�g, fpxq : x 2 Xg, and

fpx

a

q : x

a

2 X

N

g, such that

1. val(v) = v for all v 2 D + f�g, val(pxq) = x for all

x 2 X, and val(px

a

q) = x

a

for all x

a

2 X

N

,

2. tags(v) = � for all v 2 D + f�g, tags(pxq) = � for

all x 2 X, and tags(px

a

q) = � for all x

a

2 X

N

,

3. tags(i :: v) = i:tags(v) for all i 2 Ord and v 2 N ,

and such that val and tags are unde�ned in all other

cases.

Then S(X;D) has the following as its set of non-

standard transition axioms:

x

0#a

=)x

a

fh0 : px

a

q; 1 : px

a

q; . . . ; (n

x

� 1) : px

a

qig

x

a

f�g

i?v

=)x

a

fh0 : (i :: v); . . . ; (n

x

� 1) : (i :: v)i�g

x

a

f�hj : vig

j!(j::v)

=) x

a

f�g:

The standard interpretation I : D(X) ! S(X;D)

maps each variable x 2 X to the corresponding ba-

sic nonstandard process x of S(X;D).

To show that two processes f : m ! n and f

0

:

m ! n have distinct input/output relations under a

standard interpretation, it is su�cient to show that for

some particular input bu�er � 2 Buf(m), the processes

f and f

0

produce distinct sets of output when supplied

with input �. It turns out that it is su�cient to de�ne

� as follows:

� = h0 : (0 :: �); 1 : (1 :: �); . . . ; (m� 1) : ((m� 1) :: �)i:

Thus, at each input i 2 m, we place the special marker

value �, after �rst \tagging" it with i 2 Ord so that

we can later determine the origin of any particular in-

stance of �.

To make the �nal connection between syntax and

semantics and complete the proof, we establish two

technical properties about computations in dataow

calculus, which we mention here only informally. The

�rst property is an invariant, which states that only

\correct" information about the syntactic structure of

a normal form f accumulates in the tags of data values

as computation progresses. The second property is a

progress property, which states that if f and f

0

are

normal forms that are not essentially identical, then

one of them has a �nite computation, in which enough

information about its internal structure is output, that

it is impossible for the other to do likewise.

In the proof of these properties, we make use of two

helpful results about computations in dataow calcu-

lus. The �rst is a kind of \conditional conuence" re-

sult. Let us call transitions � : f=)g and �

0

: f=)g

0

independent if either they have di�erent modes, or else

they have the same modes but di�erent ports. Then

we have the following:

Lemma 5 Suppose transitions � : f=)g and �

0

:

f=)g

0

are independent, and that one of them is a stan-

dard transition. Then there exists a unique process h,

and unique transitions � : g

0

=)h and �

0

: g=)h,

such that � has the same mode and token as �, and

�

0

has the same mode and token as �

0

.

From this result, one can show that every process

has a \bu�er normalizing computation," leading to a

unique bu�er normal form, in which all data values

other than those inside of generative processes and ba-

sic nonstandard processes, have been moved as \far

to the right" as possible. Bu�er normalizing com-

putations contain only standard transitions that are

inferred without using the axioms for generative pro-

cesses, and without using the feedback rule in which

11

output in the feedback bu�er is recycled as input. The

above result also enables us to de�ne a kind of \permu-

tation equivalence" of computations (c.f. [13]). Using

this notion, we can state our second useful result: a

kind of \standardization theorem," which shows that

any computation is permutation equivalent to one in a

standard form. This standardization theorem greatly

simpli�es the proof of our invariance result.

Lemma 6 Suppose

f

0

=)f

1

=)f

2

=) . . .=)f

k

is a computation for a process f

0

in a dataow calcu-

lus. Then there exists a permutation equivalent com-

putation

f

0

#

�

=)f

0

0

=)g

1

#

�

=)f

0

1

=)g

2

#

�

=)f

0

2

=) . . .

#

�

=)f

0

k

;

such that, for each i, the computation f

i

#

�

=)f

0

i

is a

bu�er normalizing computation, and f

0

i

is the bu�er

normal form of f

i

.

The proof of Theorem 1 we have sketched above

uses the fact that the set of data values is in�nite, so

that standard coding techniques can be used for the

tagging of data values. This is not essential, since the

argument can be modi�ed to apply to dataow calculi

with only �nite sets of data values, as long as these sets

can be arbitrarily large. However, the proof does de-

pend in an essential way on the ability of the processes

to make indeterminate choices. Note that there are two

ways in which indeterminate choice is used by the ba-

sic nonstandard processes in the above interpretation:

�rst, in choosing their ID's, and second, in performing

the merging function. It is not clear whether the tech-

niques can be extended to give a completeness theorem

in the case where the interpretations are restricted to

\determinate" dataow calculi.

References

[1] J. C. M. Baeten and W. P. Weijland. Process

Algebra, volume 18 of Cambridge Tracts in The-

oretical Computer Science. Cambridge University

Press, 1990.

[2] J. D. Brock and W. B. Ackerman. Scenarios: A

model of non-determinate computation. In For-

malization of Programming Concepts, volume 107

of Lecture Notes in Computer Science, pages 252{

259. Springer-Verlag, 1981.

[3] A. Carboni and R. F. C. Walters. Cartesian bi-

categories I. Journal of Pure and Applied Algebra,

49:11{32, 1987.

[4] G. Kahn. The semantics of a simple language for

parallel programming. In J. L. Rosenfeld, editor,

Information Processing 74, pages 471{475. North-

Holland, 1974.

[5] G. Kahn and D. B. MacQueen. Coroutines and

networks of parallel processes. In B. Gilchrist, ed-

itor, Information Processing 77, pages 993{998.

North-Holland, 1977.

[6] J. Lambek and P. J. Scott. Introduction to Higher-

Order Categorical Logic, volume 7 of Cambridge

Studies in Advanced Mathematics. Cambridge

University Press, 1986.

[7] N. A. Lynch and E. W. Stark. A proof of the Kahn

principle for input/output automata. Information

and Computation, 82(1):81{92, July 1989.

[8] R. Milner. Communication and Concurrency.

Prentice Hall, 1989.

[9] D. M. R. Park. Concurrency and automata on in-

�nite sequences. In Theoretical Computer Science,

volume 104 of Lecture Notes in Computer Science.

Springer-Verlag, 1981.

[10] G. D. Plotkin. A structural approach to opera-

tional semantics. Technical Report DAIMI FN-19,

Aarhus University, 1981.

[11] E. W. Stark. Concurrent transition system seman-

tics of process networks. In Fourteenth ACM Sym-

posium on Principles of Programming Languages,

pages 199{210, January 1987.

[12] E. W. Stark. Compositional relational semantics

for indeterminate dataow networks. In Cate-

gory Theory and Computer Science, volume 389

of Lecture Notes in Computer Science, pages 52{

74. Springer-Verlag, Manchester, U. K., 1989.

[13] E. W. Stark. Connections between a concrete

and an abstract model of concurrent systems. In

Fifth Conference on the Mathematical Founda-

tions of Programming Semantics, volume 442 of

Lecture Notes in Computer Science, pages 53{79.

Springer-Verlag, New Orleans, LA, 1990.

[14] E. W. Stark. A simple generalization of Kahn's

principle to indeterminate dataow networks. In

M. Z. Kwiatkowska, M. W. Shields, and R. M.

Thomas, editors, Semantics for Concurrency,

Leicester 1990, pages 157{176. Springer-Verlag,

1990.

12

