
Data
ow Networks are Fibrations

Eugene W. Stark

�

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794 USA

(stark@cs.sunysb.edu)

Abstract

Data
ow networks are a paradigm for concurrent computation in which a collec-

tion of concurrently and asynchronously executing processes communicate by send-

ing messages over FIFO message channels. In a previous paper, we showed that

data
ow networks could be represented as certain spans in a category of automata,

or more abstractly, in a category of domains, and we identi�ed some universal

properties of various operations for building networks from components. Not all

spans corresponded to data
ow processes, and we raised the question of what might

be an appropriate categorical characterization of those spans that are \data
ow-

like." In this paper, we answer this question by obtaining a characterization of the

data
ow-like spans as split right �brations, either in a 2-category of automata or

a 2-category of domains. This characterization makes use of the theory of �bra-

tions in a 2-category developed by Street. In that theory, the split right �brations

are the algebras of a certain doctrine (or 2-monad) R on a category of spans. For

the 2-categories we consider, R has a simple interpretation as an \input bu�ering"

construction.

1 Introduction

Data
ow networks [4, 5] are a paradigm for concurrent computation in which a collection

of concurrently and asynchronously executing processes communicate by sending messages

over FIFO message channels. Determinate data
ow networks compute continuous func-

tions from input message histories to output message histories, and have a well-understood

theory. Less developed is the theory of indeterminate or non-functional networks. These

more general networks are especially interesting because they exhibit both concurrency

and indeterminacy, and insight gained from their study will likely contribute to a better

overall understanding of these two concepts.

This paper is part of a research program aimed at �nding the correct algebraic setting

for the study of indeterminate data
ow networks. We wish to view data
ow networks

as the elements of an algebra whose operations represent ways to build networks from

�

Research supported in part by NSF Grant CCR-8902215.

components, and we would like to understand fully the notions of behavioral equivalence

that are appropriate in this context. For some time, we have been studying a particular

automata-theoretic model for data
ow networks, in an attempt to identify whatever useful

algebraic structure might be present. Based on the progress we have made so far [8, 9, 10,

13], a general structure appears to be emerging. However, all is not yet completely clear,

and it continues to be di�cult to identify and separate the important structure from the

incidental artifacts of the model.

In a previous paper [9] we showed that a data
ow network with input \ports" X

and output ports Y could be represented as a span from FX to FY (i.e. a diagram

FY

g

 �A

f

�!FX) in a �nitely complete category Auto of concurrent automata. Here F

is a suitable functor that associates \objects of inputs" FX and FY in Auto with �nite

sets of ports X and Y . We showed that various constructions, corresponding intuitively

to ways of composing smaller networks into larger ones, could be de�ned in terms of limits

in Auto. In particular, the operation of \feeding back" outputs to inputs was de�ned

in terms of equalizers. We also showed that data
ow networks could be modeled more

abstractly as spans in a category of EvDom of \con
ict event domains," and that this

model is related to the more concrete automaton model by a core
ection. Consequently,

operations de�ned in terms of limits are preserved in the passage from the more concrete

model to the more abstract version.

At the end of the previous paper, we noted several interesting properties, valid in the

domain-theoretic model, of spans corresponding to data
ow processes, and we raised the

question of what might be the correct categorical characterization of the \data
ow-like"

spans. A proper answer to this question would be prerequisite to the construction of a fully

categorical theory of data
ow networks. In the present paper, we obtain a characterization

of data
ow-like spans as split right �brations, either in a 2-category of automata, or in a

2-category of domains. The fact that essentially the same characterization holds in both

cases lends credence to the idea that it is in fact the correct categorical notion. Further

support comes from an intuitive interpretation of the de�nition of �bration. Fibrations

in a 2-category are de�ned to be the algebras of a certain \doctrine," or 2-monad. In the

present situation, this doctrine corresponds to the construction \compose with an input

bu�er." Thus, the data
ow-like spans are those spans that are algebras of the input

bu�ering doctrine.

The theory of �brations was �rst developed in terms of concrete constructions on

categories [3]. Then, Street [14, 15], building on work of Gray [2], showed that this theory

has a bicategorical formulation, which can be applied not only to the 2-category Cat, but

to any bicategory with su�cient completeness properties. Here, we examine how the the-

ory applies to the category Auto of automata and the category EvOrd of \con
ict event

orderings," which is equivalent to the category EvDom of our previous paper. These

categories have 2-categorical structure we have not exploited until now. As a technical

matter, the 2-categories Auto and EvOrd do not quite have the necessary complete-

ness properties (existence of comma objects and certain 2-pullbacks), so our results are

complicated somewhat by the necessity of enlarging them to 2-categories AutoWk, of

\automata and weak morphisms," and EvOrdWk, of \con
ict event orderings and sup-

preserving maps." We determine the structure of the split right �brations in each of the

2-categories AutoWk and EvOrdWk. Our main results are: (1) the data
ow-like spans

in Auto are exactly those that are split right �brations in AutoWk with an Auto-

morphism as cleavage, and (2) the data
ow-like spans in EvOrd are exactly those that

are split right �brations in EvOrdWk with an EvDom-morphism as cleavage.

Some further comments are in order concerning the general directions envisioned for

this research. We would like very much to be able to de�ne a notion of \data
ow model,"

which would permit both the study of the algebra of network-forming operations, and the

comparison of di�erent data
ow models by means of homomorphisms. In the author's

opinion, the evidence at present suggests quite strongly that a data
ow model ought to

be a certain kind of bicategory, whose objects are \types," whose arrows are \processes,"

and whose 2-cells are morphisms of processes. Composition of arrows would correspond

to \sequential composition" of processes, in which the output of one process becomes the

input of another. The bicategory would also be equipped with a functorial tensor product

, which would provide a way to form the \parallel composition" p
 p

0

: X
 X

0

!

Y
 Y

0

of processes p : X ! Y and p

0

: X

0

! Y

0

. It ought to be possible to de�ne

other operations on processes using bicategorical constructions, although in some cases

(in particular the feedback operation) this remains problematic. At present, we have

several examples of this type of bicategorical model for data
ow networks, but the correct

general formulation seems elusive. The \bicategories of spans" of Carboni and Walters

[1] represent an example of the structure we might hope to �nd.

We hope that the organization chosen for the rest of this paper will make the motiva-

tions from the intended application area clear both to category theorists and to computer

scientists, and will hold the attention, at least for a little while, of computer scientists

unfamiliar with 2-categories. To this end, we have kept Section 2 of the paper almost com-

pletely free of 2-categories. Instead, we de�ne the ordinary categories Auto of automata

and AutoWk of automata and weak morphisms, ignoring their 2-categorical structure,

and we show how certain spans in these categories model processes that consume inputs

and produce outputs. We show that these \monotone automata" are in fact the algebras

of an \input bu�ering monad" on a category of spans in AutoWk. This result prepares

the connection, made in Section 3, with �brations in AutoWk. For this, the use of 2-

categories is necessary, and the reader is referred to [6, 14, 15] for the basic terminology

and notations. In Section 4, we apply the theory to the 2-category EvOrdWk of domains

and obtain a similar characterization of the data
ow-like spans in EvOrdWk.

Finally, a comment on notation. In this paper, fx or f(x) denotes the application of

a mapping f to its argument x. Compositions are written in reverse diagrammatic order,

so that gf denotes f followed by g. We extend this convention to all types of composition.

For example, if e

1

; e

2

; . . . ; e

n

are elements of a set E, then the string \e

1

followed by e

2

followed by . . . followed by e

n

" will be denoted e

n

. . . e

2

e

1

.

2 Trace Automata

In this section, we review the automata-theoretic model for data
ow networks presented

in [9], along with its associated intuition. The objects of this model are certain spans in

a category Auto of \trace automata." We develop various properties of these spans, to

motivate the idea that they ought to be examples of �brations.

2.1 Concurrent Alphabets and Traces

A concurrent alphabet is a pair (E; k), where E is a set, and k is a symmetric, irre
exive

relation on E, called the concurrency relation. If eke

0

, then we say that e and e

0

are

concurrent or that they commute. A set U � E is called commuting if eke

0

for all e; e

0

2 U

with e 6= e

0

, and we use Comm(E) to denote the set of all �nite commuting subsets of

E. Intuitively, if E is the set of basic observable actions of interest for some system, then

Comm(E) is the set of all possible instantaneous occurrences that might be observed

during an execution of that system. If U; V 2 Comm(E), then U and V are called

orthogonal, and we write U ? V , if U [V 2 Comm(E) and U \ V = ;.

A morphism from a concurrent alphabet E to a concurrent alphabet E

0

is a function

h : Comm(E)! Comm(E

0

), such that

1. h(;) = ;.

2. If U [V 2 Comm(E), then h(U)[h(V) 2 Comm(E

0

), and h(U nV) = h(U)nh(V).

The symbol n denotes set di�erence. It can be shown [9] that if U [V 2 Comm(E),

then h(U [V) = h(U) [h(V), so that a morphism of concurrent alphabets is uniquely

determined by its action on singleton sets. We often use this fact in de�ning particular

morphisms. It can also be shown U ? V implies f(U) ? f(V) | as a special case we

see that eke

0

implies f(feg) \ f(fe

0

g) = ;. Let Alph denote the category of concurrent

alphabets and their morphisms. The identity morphism on E is just the identity function

from Comm(E) to Comm(E). Composition of morphisms is function composition.

The product E
 E

0

of concurrent alphabets E and E

0

is the concurrent alphabet

whose set of elements is the disjoint union of the sets of elements of E and E

0

, and whose

concurrency relation extends those of E and E

0

by making each element of E concurrent

with each element of E

0

. Equipping E
E

0

with the restriction maps

- \ E : E
 E

0

! E

- \ E

0

: E
 E

0

! E

0

makes E
 E

0

into a categorical product.

Suppose E is a concurrent alphabet. The free partially commutative monoid gen-

erated by E is obtained by factoring the monoid of �nite sequences of elements of E by

the least congruence that relates ee

0

and e

0

e whenever eke

0

. We use E

�

to denote this

monoid, whose elements are called traces [7]. We shall �nd it convenient in the sequel to

identify a set U = fe

1

; . . . ; e

n

g 2 Comm(E) with the corresponding trace e

n

. . . e

1

2 E

�

.

In this way we give meaning to expressions such as U

m

U

m�1

. . .U

1

, where U

i

2 Comm(E)

for 1 � i � m.

2.2 Trace Automata

\Trace automata" are transition systems whose transition labels are drawn from a concur-

rent alphabet. To capture the idea that \concurrent transitions commute," the de�nition

of trace automata includes the requirement that if two transitions with concurrent labels

are enabled in the same state, then they can be executed in either order with the same

e�ect.

Formally a trace automaton (or more simply, an automaton) is a four-tuple

A = (E;Q; T; q

i

);

where

� E is a concurrent alphabet of actions.

� Q is a set of states, with q

i

2 Q a distinguished initial state.

� T : Q�E ! Q is a partial function, called the transition map, such that whenever

eke

0

, T (q; e) = r, and T (q; e

0

) = r

0

, then there exists s 2 Q with T (r; e

0

) = s =

T (r

0

; e).

We often write e : q ! r or q

e

�!r to assert that T (q; e) = r, and call the triples (q; e; r)

such that q

e

�!r the transitions of A. Condition (3) in the above de�nition embodies the

intuitive idea that the order of occurrence of concurrent actions is immaterial.

A computation sequence for a trace automaton A is a �nite sequence of transitions

of the form:

q

0

e

1

�!q

1

e

2

�! . . .

e

n

�!q

n

:

Each computation sequence
 determines a corresponding trace tr(
) = e

n

e

n�1

. . . e

1

2 E

�

.

Two computation sequences are equivalent if they have the same trace, and the equivalence

classes of computation sequences are called the computations of A.

A morphism from a trace automaton A to a trace automaton A

0

is a pair of maps

h = (h

a

; h

s

), where h

a

: E ! E

0

is a morphism of concurrent alphabets, and h

s

: Q! Q

0

is a function, such that:

� h

s

(q

i

) = q

0

i

.

� For all q, r 2 Q and e 2 E, if e : q ! r in A and h

a

(e) = fe

1

; e

2

; . . . ; e

n

g, then

T

0

(h

s

(q); e

i

) is de�ned for all i with 1 � i � n, and A

0

has a computation sequence

q

0

e

1

�!q

1

e

2

�! . . .

e

n

�!q

n

:

with q

0

= h

s

(q) and q

n

= h

s

(r).

The above notion of morphism was introduced in [9], where it was also shown that

the resulting category Auto has reasonable properties. (In particular, Auto has �nite

limits, which are created by the forgetful functor from Auto to the product of Alph

and the category Set

�

of pointed sets.) The intuition behind the de�nition is that �nite

commuting sets of transitions are what a trace automaton can do in a single instantaneous

step, and these are the things that ought to be preserved by their morphisms. The

reason why �nite commuting sets of transitions, rather than single transitions, are what

correspond to instantaneous steps, can be seen by considering a �nite product A = A

1

�

. . . � A

n

of automata. We wish to think of A as representing a system fA

1

; . . . ; A

n

g,

executing concurrently and independently. In such a system, there is the possibility of

the simultaneous occurrence of a transition from each of the A

i

. Formally, this is re
ected

in the requirement that a collection of morphisms h

i

: B ! A

i

(1 � i � n) induce a

unique morphism h : B ! A. In order for h to be a morphism, we must allow morphisms

to map single transitions of B to �nite commuting sets of transitions of A.

The category Alph is isomorphic to a full re
ective subcategory of Auto via the

functor that takes each concurrent alphabet E to the one-state automaton with alphabet

E, having a transition for each of its actions. Since the embedding of Alph in Auto is

right-adjoint to the forgetful functor fromAuto toAlph, it preserves limits. In the sequel,

it will be convenient for us to identify a concurrent alphabet E with the corresponding

one-state automaton.

2.3 Monotone Automata

We wish to discuss automata that consume inputs and produce outputs. Therefore, if

X and Y are concurrent alphabets, we de�ne an automaton from X to Y to be a span

Y

g

 �A

f

�!X from X to Y in Auto. Intuitively, if Y

g

 �A

f

�!X is an automaton from

X to Y , then we think of X as an \object of inputs," whose transitions represent the

possible inputs that A might consume. Similarly, we regard Y as an \object of outputs,"

whose transitions represent the possible outputs that A might produce. If Y

g

 �A

f

�!X

and Y

g

0

 �A

0

f

0

�!X are automata from X to Y , then an arrow of spans from A to A

0

is

a morphism h : A ! A

0

such that g

0

h = g and f

0

h = f . Let Auto(X;Y) denote the

category of automata from X to Y , with arrows of spans as morphisms.

We wish to single out automata with the following properties:

1. They are always prepared to consume arbitrary input.

2. The act of consuming input can never cause enabled output transitions to become

disabled, although it may cause more output transitions to become enabled.

In previous papers, we have formalized such automata using variants of the following

de�nition: an automaton A from X to Y is monotone i� the alphabet E of A is (up to

isomorphism) of the form Z
X, with f

a

: E ! X the restriction to X, with g

a

e = ; for

all e 2 X, and in addition with the following condition satis�ed:

(Receptivity) For all states q of A, and all actions e 2 X, there exists a transition q

e

�!r

of A.

The \port automata" de�ned in [9], are special cases of monotone automata, in which X

and Y are concurrent alphabets whose elements represent the transmission of data values

over �nite sets of \ports," and E is required to be of the form Y
 Z
 X, with g the

restriction to Y . We use the more general monotone automata here because they have a

clean characterization in terms of �brations.

The next result, easily proved from the de�nitions, gives the essential properties of

monotone automata. Statement (1) is a generalization of receptivity to arbitrary traces,

rather than single actions. Statement (2) states that under certain conditions, a transition

of A in state q can be \pushed out" along an input computation sequence, to yield a

transition of A from the �nal state of that computation sequence.

Proposition 2.1 Suppose A is a monotone automaton from X to Y . Then

1. For all states q of A and all traces x in X

�

, there exists a computation sequence of

A, starting from state q and having trace x. Moreover, any two such computation

sequences arrive in the same �nal state, which we denote by q � x.

2. Suppose q

e

�!r is a transition of A, and x and x

0

are traces in X

�

, such that x

0

e = ex.

Then A also has a transition q � x

e

�!q � x

0

.

2.4 The Input Bu�ering Monad

Suppose Y

g

 �A

f

�!X is an automaton from X to Y . The input bu�ering construction is

a way to obtain a monotone automaton Y

g

0

 �BA

f

0

�!X by \composing A with an input

bu�er." Formally, if A = (E;Q; T; q

i

), then BA = (E

0

; Q

0

; T

0

; q

0

i

), where:

� E

0

= E
X.

� Q

0

= Q � X

�

. That is, the states of BA are pairs (q; x), where q is a state of A,

and x is a trace in X

�

. The initial state q

0

i

of BA is the pair (q

i

; �), where � is the

empty trace.

� The transition map T

0

: Q

0

�E

0

! Q

0

of BA is de�ned as follows:

1. If e 2 X, then T

0

((q; x); e) = (q; ex).

2. If e 2 E, then T

0

((q; x); e) is de�ned i� A has a transition q

e

�!r and there

exists x

0

with x = x

0

(fe), in which case T

0

((q; x); e) = (r; x

0

).

Intuitively, a state of BA is a pair (q; x) consisting of a state q of A and an \input bu�er" x.

There are two types of transitions of BA: input transitions (case (1) above), in which input

e 2 X arrives and is appended to the tail of the input bu�er, and noninput transitions

(case (2) above), in which A performs a transition q

e

�!r, absorbing any necessary input

fe from the head of the input bu�er.

De�ne f

0

: BA ! X to take (q; x) to the unique state of X, and to take e 2 X to

feg and e 2 E to ;. De�ne g

0

: BA! Y to take (q; x) to the unique state of Y , to take

e 2 X to ;, and e 2 E to ge. It is straightforward to verify that f

0

and g

0

are morphisms

of automata. We have the following result:

Proposition 2.2 For any automaton A from X to Y , the automaton BA from X to Y

is a monotone automaton. Moreover, the map taking A to BA extends in an obvious way

to a functor B : Auto(X;Y)! Auto(X;Y).

In fact, more can be shown. For each automaton A fromX to Y , there is a morphism

�

A

: BBA! BA. Intuitively, �

A

is the morphism that collapses two tandem input bu�ers

into one, hiding actions corresponding to the transfer of input between the two bu�ers.

Formally, the map �

A

takes a state ((q; x); x

0

) of BBA to the state (q; x

0

x) of BA. To

de�ne the behavior of �

A

on actions, observe that the alphabet of BBA is of the form

(E
X)
X, and the alphabet of BA is of the form E
X. The map �

A

takes e 2 E

to feg, it takes e in the \outer copy" of X to feg, and it takes e in the \inner copy" of X

to ;.

Proposition 2.3 The maps �

A

: BBA ! BA are morphisms of automata, which are

the components of a natural transformation � : BB ! B that satis�es the associative law

� � (B�) = � � (�B).

If A is a monotone automaton from X to Y , then we may also obtain a morphism

h

A

: BA! A. To see this, note that the alphabet E of A has the form Z
X, and the

alphabet of BA has the form (Z
X)
X. Let h

A

: BA ! A take each state (q; x) of

BA to the state q � x of A (see Proposition 2.1), each action e in Z to feg, each action e

in the \outer copy" of X to feg, and each action e in the \inner copy" of X to ;.

Proposition 2.4 If A is a monotone automaton from X to Y , then the map h

A

: BA!

A is an arrow of spans. Moreover, h

A

� �

A

= h

A

�Bh

A

.

Proof { If h

A

is a morphism of automata, then the fact that it is an arrow of spans

is immediate from the de�nitions. To see that h

A

is a morphism of automata, suppose

(q; x)

e

�!(q

0

; x

0

) is a transition of BA. If e is an input action (i.e. it is in the outer copy of

X), then x

0

= ex and q

0

= q. In this case, A has a transition q � x

e

�!q � ex, which is then

the image of (q; x)

e

�!(q

0

; x

0

) under h

A

. If e is a noninput action in the inner copy of X,

then x

0

e = x and A has a transition q

e

�!q

0

. By Proposition 2.1, A also has a transition

q � x

0

e

e

�!q

0

� x

0

which is then the image of (q; x)

e

�!(q

0

; x

0

) under h

A

. Finally, if e 2 Z,

then x

0

= x and A has a transition q

e

�!q

0

. By Proposition 2.1, A also has a transition

q � x

e

�!q

0

� x

0

, which is the image of (q; x)

e

�!(q

0

; x

0

) under h

A

.

Proposition 2.3 states that B is almost the underlying functor of a monad, with the

natural transformation � as multiplication. Proposition 2.4 states that every monotone

automaton from X to Y almost carries a structure of B-algebra. What is missing to make

B an actual monad, and the monotone automata its actual algebras, is the monad unit,

which would be a natural transformation � : 1 ! B. The components �

A

: A ! BA of

such a natural transformation almost exist. More precisely, the map �

A

would have to

take a state q of A to the state (q; �) of BA, and an action e 2 E to the disjoint sum

feg + fe 2 Comm(E
 X). The only problem is that such a map �

A

need not be a

morphism.

One can see what goes wrong by considering the caseA = Z
X, with f : A! X the

restriction to X and g : A! Y the zero map. In this case, A has just one state �, so up to

isomorphism BA has as its states the traces in X

�

, and the alphabet of BA is (Z
X)
X.

The map �

A

would have to take the unique state � of A to the empty trace �, and each

action a 2 X to the set fa; a

0

g 2 Comm((Z
X)
X), where a

0

is in the \inner copy" of

X and a is in the \outer copy." Since A has a transition a : � ! � whenever a 2 X, for

�

A

to be a morphism, BA would have to have transitions from state � for both actions a

and a

0

. In fact, BA has transitions �

a

�!a

a

0

�!�, but no transition for action a

0

in state �.

Intuitively, BA has the capability of accepting input a in one step and then processing it

on the next step, but not of doing both in a single step. There are two ways around this

problem: we can enlarge the class of objects of Auto to include automata capable of the

behavior required of BA, or we can weaken the properties required of morphisms Auto,

so as to include all the maps �

A

. Ultimately, the �rst approach is probably the correct

way to proceed, but the de�nition of a suitably general class of automata (such as the

\concurrent transition systems" of [11, 12]) introduces an additional layer of abstraction

that would tend to obscure the ideas we wish to convey here. We therefore follow the

second approach in this paper.

Thus, a weak morphism from a trace automaton A to a trace automaton A

0

is a pair

of maps h = (h

a

; h

s

), where h

a

: E ! E

0

is a morphism of concurrent alphabets, and

h

s

: Q! Q

0

is a function, such that:

� h

s

(q

i

) = q

0

i

.

� For all q, r 2 Q and e 2 E, if e : q ! r in A, then for some enumeration

fe

1

; e

2

; . . . ; e

n

g of h

a

(e), the automaton A

0

has a computation sequence

q

0

e

1

�!q

1

e

2

�! . . .

e

n

�!q

n

:

with q

0

= h

s

(q) and q

n

= h

s

(r).

The change is that we have deleted the requirement that T

0

(h

s

(q); e

i

) be de�ned for all i

with 1 � i � n.

Let AutoWk denote the category of trace automata and weak morphisms. This

category is not as nice as the category Auto: although AutoWk does have �nite prod-

ucts, which are constructed the same way as in Auto, it fails to have all equalizers. In

addition, there is no way to extend the core
ection between Auto and EvDom, exhib-

ited in [9], to a core
ection betweenAutoWk and some expansion of EvDom. For these

reasons, we shall have to work with both categories Auto and AutoWk.

Proposition 2.5 The functor B extends to an endofunctor of AutoWk(X;Y). The

maps �

A

: A ! BA are weak morphisms of trace automata, which are the components

of a natural transformation � : 1 ! B that satis�es the unit laws � � B� = 1 = � � �B.

Thus, the triple (B; �; �) is a monad in AutoWk(X;Y).

We now arrive at the main result of this section.

Theorem 1 Suppose A is an automaton from X to Y . Then A is a monotone automaton

i� there is a Auto-morphism h

A

: BA! A enriching A with a structure of B-algebra.

Proof { Suppose Y

g

 �A

f

�!X is a monotone automaton from X to Y . Let the map

h

A

: BA ! A be as in Proposition 2.4. It is a straightforward use of the de�nitions to

check that h

A

� �

A

= 1 and h

A

� �

A

= h

A

� (Bh

A

), so that h

A

is a B-algebra structure on

A.

Conversely, suppose h

A

: BA ! A is an Auto-morphism enriching the span

Y

g

 �A

f

�!X with a structure of B-algebra. Now, the alphabet of BA is of the form

E
X, with f the restriction to X. Suppose e 2 X. Because fh

A

= f

0

: BA ! A, we

must have fh

A

e = f

0

e = feg. There must therefore exist some particular e

0

2 h

A

e with

fe

0

= feg. So, for each e 2 X, there exists e

0

2 E with fe

0

= feg. Moreover, if e

1

ke

2

, then

h

A

e

1

? h

A

e

2

, so we must have e

0

1

ke

0

2

. Conversely, if e

0

1

ke

0

2

, then fe

1

g = fe

0

1

? fe

0

2

= fe

2

g,

so e

1

ke

2

. Thus, E ' (E nfe

0

: e 2 Xg)
fe

0

: e 2 Xg, with f the restriction on the second

factor. Since the second factor is isomorphic to X, we have shown that the alphabet E of

A has the form required of a monotone automaton. To prove that A has the receptivity

property, observe that given e

0

corresponding to e 2 X, applying h

A

to the transition

(q; �)

e

�!(q; e) of BA gives a computation h

A

e : q ! r of A. Using the fact that e

0

2 h

A

e

and the assumption that h

A

is a morphism, not just a weak morphism, we see that e

0

is

enabled for A in state q, yielding the required transition q

e

0

�!q � e of A.

3 Fibrations between Automata

The de�nition of monotone automaton given in Section 2, although successful at capturing

our intuition, and having a number of interesting consequences as well, is not categorical,

and is therefore unsuitable as a basis for a category-theoretic study of the properties of

data
ow-like networks, viewed as spans in a category of automata. The purpose of this

section is to show that monotone automata can be characterized categorically as certain

split right �brations in a suitable 2-category of automata.

In the theory of �brations in a 2-category developed by Street [14, 15], the (two-

sided) split �brations from X to Y in a 2-category K are de�ned to be the algebras

of a certain \doctrine" (or \2-monad") M on the 2-category of spans from X to Y in

K. The structure map for an M -algebra is called a \cleavage" for the underlying span.

The one-sided \left" and \right" �brations (essentially corresponding to what were earlier

called split �brations and split op-�brations) are also algebras of doctrines L and R, which

compose according to certain distributive laws to form M .

The connection between the abstract theory of �brations and the concrete de�nitions

we have given so far is made when one realizes that in the automata-theoretic case, the

functor R is essentially the input bu�ering construction B, de�ned concretely for trace

automata in the previous section, which takes an automaton A fromX to Y and composes

it with an input bu�er to yield a \free X-input-bu�ered automaton" BA from X to Y .

It then follows from Theorem 1 that the monotone automata from X to Y are exactly

those automata from X to Y that are split right �brations in AutoWk having an Auto-

morphism as cleavage. Dually, it is possible to identify the doctrine L as an \output

bu�ering construction," however we do not develop that idea further in this paper.

3.1 AutoWk as a 2-Category

Suppose A is an automaton. Let A

�

be the category whose objects are the states of A,

and whose arrows are its computations (computation sequences modulo trace equivalence).

Empty computations serve as identities and computations are composed by concatenation.

We call A

�

the computation category of A. It can be shown [12] that: (1) A

�

has no

nontrivial isomorphisms, (2) every arrow of A

�

is both epi and mono, (3) every span

s

g

 �q

f

�!r that can be completed to a commuting square has a pushout. Moreover,

if f : A ! B is a morphism of AutoWk, then f determines a pushout-preserving

functor f

�

: A

�

! B

�

, in such a way that the map taking A to A

�

becomes a functor

(-)

�

: AutoWk! Cat. Speci�cally, f

�

takes each state q of A

�

(which is nothing more

than a state q of A) to the state fq of B

�

. The action of f

�

on arrows of A

�

(that is, on

computations of A) is determined by the fact that it is to be a functor from A

�

to B

�

(hence it must preserve empty computations and concatenation of computations), and

that it takes each single-transition computation
 : q

e

�!r of A to its image f
 in B.

The category AutoWk can be made into a 2-category in such a way that (-)

�

:

AutoWk ! Cat becomes a 2-functor. Speci�cally, if f , g : A ! B in AutoWk, then

a 2-cell from f to g is a natural transformation � : f

�

) g

�

. Identity 2-cells, along

with vertical and horizontal composition, are inherited from Cat, and the interchange

law holds because it does in Cat. The subcategory Auto becomes a 2-category in the

same way.

It should be emphasized here that although Auto is �nitely complete as a 1-category,

it is not the case that all limits are 2-limits. In particular, it is not the case that every

pullback is a 2-pullback. Similarly, even for the cases in which ordinary limits exist in

AutoWk, these need not be 2-limits. We shall see, though, that enough 2-pullbacks do

exist in AutoWk to satisfy our needs.

3.2 Comma Objects

A comma object [14] for an opspan Y

g

�!A

f

 �X from X to Y in a 2-category K is a span

Y

d

0

 �g=f

d

1

�!X from X to Y , together with a 2-cell � : gd

0

) fd

1

, such that composition

with � yields a 2-natural isomorphism

K(- ; g=f) ' K(- ; g)=K(- ; f):

Here for each objectX the expressionK(X; g)=K(X; f) denotes the usual comma category

of the functors K(X; g), K(X; f). An equivalent elementary description of this situtation

is that, for each span Y

u

0

 �B

u

1

�!X from X to Y in K, we have the following properties:

1. For every 2-cell � : gu

0

) fu

1

, there exists a unique h : B ! g=f , such that � = �h.

2. Given 2-cells � : d

0

h) d

0

h

0

and � : d

1

h) d

1

h

0

such that �h

0

� g� = f� � �h, then

there exists a unique 2-cell � : h) h

0

such that � = d

0

�, � = d

1

�.

Lemma 3.1 The 2-category AutoWk has a comma object for every opspan.

Proof { Given an opspan Y

g

�!A

f

 �X from X to Y in AutoWk, de�ne an automaton

g=f as follows:

� The alphabet of actions of g=f is the product Y
X.

� The states of g=f are arrows gr

�!fq of A

�

, or more precisely, triples (r;
; q) with

r a state of Y , q a state of X, and
 : gr ! fq an arrow of A

�

. The initial state of

g=f is the identity computation on the initial state q

i

of A.

� Suppose gr

�!fq and gr

0

0

�!fq

0

are states of g=f . There are two cases in which

there are transitions of g=f from
 to

0

:

1. In case q

0

= q, then the transitions from
 to

0

are the transitions r

e

�!r

0

of

Y such that

0

(ge) =
 in A

�

:

?

-

-

?

0

ge

1

gr

0

gr

fq

fq

0

2. In case r

0

= r, then the transitions from
 to

0

are the transitions q

e

�!q

0

of

X such that

0

= (fe)
:

?

-

-

?

0

1

fe

gr

0

gr

fq

fq

0

These are the only types of transitions that g=f has. One may verify that g=f satis�es

the commutativity condition required of an automaton.

De�ne maps d

0

: g=f ! Y and d

1

: g=f ! X as follows:

� d

0

takes a state gr

�!fq of g=f to the state r of Y , and restricts the alphabet of

g=f to the Y component.

� d

1

takes a state gr

�!fq of g=f to the state q of X, and restricts the alphabet of

g=f to the X component.

It is easily seen that d

0

and d

1

are morphisms of trace automata. The automaton g=f is

also equipped with a 2-cell � : gd

0

) fd

1

, which associates with each state gr

�!fq of

g=f the computation
 of A.

We claim that g=f , equipped with the maps d

0

and d

1

and the 2-cell �, is a comma

object in AutoWk for the opspan Y

g

�!A

f

 �X. To see this, suppose Y

u

0

 �B

u

1

�!X is a

span in AutoWk.

1. Suppose we are given a 2-cell � : gu

0

) fu

1

. With each state q of D, this 2-

cell (which is actually a natural transformation from (gu

0

)

�

to (fu

1

)

�

) associates

a computation

q

: gu

0

q ! fu

1

q of A, in other words with each state q of D is

associated a state of g=f .

De�ne the map h : B ! g=f to take each state q of B to the corresponding state

q

of g=f , and each action e of B to the disjoint sum ge+ fe, which is a commuting

set of actions of g=f . Clearly, if h is a weak morphism of automata, then it is the

unique such morphism such that � = �h.

To see that h is a weak morphism of automata, suppose we are given a transition

q

e

�!r of B. This transition determines the following commuting diagram in A

�

:

6

-

6

-

gu

0

e

fu

1

e

q

r

gu

0

q

fu

1

q fu

1

r

gu

0

r

which factors as follows:

6

-

6

-

1

fu

1

e

q

gu

0

q

fu

1

q fu

1

r

gu

0

q

-

6

-

gu

0

r

fu

1

r

r

1

gu

0

e

Since the left and right squares clearly determine computations of g=f , their com-

posite does too. This composite computation is the image of the transition q

e

�!r

under h. (A map h behaving in this way is in general not a morphism of automata,

but rather only a weak morphism.)

2. Suppose we are given 2-cells � : d

0

h) d

0

h

0

and � : d

1

h) d

1

h

0

, such that �h

0

� g� =

f� � �h. For each state q of B, let �

q

denote the computation of g=f corresponding

to the following commuting square in A

�

:

6

-

6

-

g�q

f�q

�hq
�h

0

q

d

0

hq

d

1

hq
d

1

h

0

q

d

0

h

0

q

To see that this square does in fact determine a computation of g=f , use the same

factoring trick as in (1) above. The map � that assigns to each state q of B the

corresponding computation �

q

of g=f , is now easily seen to be the unique 2-cell

� : h) h

0

such that � = d

0

�, � = d

1

�.

The alphabet of actions of a comma object g=f of an opspan from X to Y is the

product Y
X. Let us call the actions in the Y component output actions, and those in

the X component input actions. This terminology suggests an intuitive interpretation of

g=f as kind of \nondeterministic X to Y transducer," which accepts as input a sequence

of actions of X, records some information about these actions internally in the form of

a computation of automaton A, and then outputs this information, perhaps after some

delay, in the form of a sequence of actions of Y . Of special interest is the comma object

�A for the opspan A

1

�!A

1

 �A from A to A. We interpret �A as an \A-bu�er."

The factoring trick used in the proof above represents an important property of

comma objects in AutoWk, which can be formalized as follows:

Lemma 3.2 Every 2-cell
 between morphisms from B to g=f has a unique input/output

factorization; that is,
 factors uniquely as �� with d

0

� and d

1

� both identity 2-cells.

As noted above, AutoWk does not even have all ordinary pullbacks, let alone all

2-pullbacks. Fortunately, though, the 2-pullbacks that we need for the notion of �bration

to make sense actually do exist:

Lemma 3.3 Suppose f : A! C, and g : B ! C in AutoWk. Then all three indicated

2-pullbacks exist in AutoWk.

@

@

@

@

@R

�

�

�

�

�	

@

@

@

@

@R

�

�

�

�

�	

�

�

�

�

�	

@

@

@

@

@R

�

�

�

�

�	

@

@

@

@

@R

�

�

�

�

�	

@

@

@

@

@R

C C

B �C A

g

�

� �C �C � f

g

�

� �C � f

d

0

d

1

g

f

The proof of this result relies heavily on the input/output factorization property of

computations of �C.

3.3 The Input Bu�ering Doctrine

We are now in a position to apply the theory of �brations to AutoWk. Given concurrent

alphabets X and Y , let Span(X;Y) denote the 2-category of spans in AutoWk from X

to Y . Suppose Z

g

 �A

f

�!X is a span from X to Z and Y

k

 �B

h

�!Z is a span from Z

to Y . If the following diagram is a 2-pullback,

?

-

-

?

h

h

0

g

0

g

B

B �A A

Z

then the span Y

kg

0

 �B �A

fh

0

�!X from X to Y is called the composite of B and A. Com-

position on the right with the comma object �X, viewed as a span from X to X, yields

an endo-2-functor

R : Span(X;Y)! Span(X;Y):

Explicitly, if A is a span from X to Y , then RA is the span A��X from X to Y . In view

of our intuitive interpretation of �X as an \X-bu�er," we may interpret R as an \input

bu�ering construction," which takes a span from X to Y and places it in tandem with an

input bu�er, producing an \input-bu�ered" span from X to Y .

The 2-functor R comes equipped with 2-natural transformations � : 1 ! R and

� : RR ! R making (R; �; �) a monad in 2Cat (also called a 2-monad or a doctrine).

The component �A of � at a span Y

g

 �A

f

�!X from X to Y is the unique arrow of spans

A ! RA whose composition with the projection RA ! A is 1

A

and whose composition

with the projection RA ! �X is the map i

f

: A ! �X corresponding to the identity

2-cell on f : A! X. The component �A of � at the span A is the unique arrow of spans

1

A

� c : RRA ! RA induced by the map 1

A

: A ! A and the map c : �X � �X ! �X

corresponding to the composite 2-cell:

@

@

@

@

@R

�

�

�

�

�	

�

�

�

�

�	

@

@

@

@

@R

- �

?

X

�X �X

�X � �X

X

d

0

d

1

pr

0

pr

1

d

0

d

1

(=

�

(=

�

1

The existence of R, �, and �, and the fact that they form a doctrine, follows au-

tomatically from general properties of comma objects and 2-pullbacks (see [14]). The

concrete form taken by these data in the 2-category AutoWk is given by the following

result, which is easily proved by working through the de�nitions.

Lemma 3.4 Suppose X and Y are one-state trace automata. Then the doctrine (R; �; �),

regarded as an ordinary monad on the category Span(X;Y), is nothing but the input

bu�ering monad (B; �; �) de�ned in Section 2.

A span A from X to Y is called a split right �bration if it admits a structure of

algebra for the doctrine R. This means that there exists an arrow of spans h

A

: RA! A

such that h

A

� (�A) = 1 and h

A

� (Rh

A

) = h

A

� (�A). The structure map h

A

is called

a right cleavage for A. It is a consequence of the general theory that if a span A is a

split right �bration, then the cleavage h

A

is left-adjoint to the map �A : A! RA, hence

is determined uniquely up to an invertible 2-cell. In the case of AutoWk, there are no

invertible 2-cells other than identities, so h

A

is unique. Street also de�nes a more general

notion of right �bration, which is a span A that bears a structure of pseudo-R algebra. For

a pseudo R-algebra, the above diagrams are required to commute only up to invertible

2-cell, rather than exactly. Again, since AutoWk has no nontrivial invertible 2-cells,

there is no di�erence between a right �bration and a split right �bration.

The following is the main result of this section. It is a direct consequence of Theorem

1 and Lemma 3.4.

Theorem 2 Suppose X and Y are one-state automata. Then an automaton from X to

Y is monotone i� it is a split right �bration in AutoWk having an Auto-morphism as

cleavage.

4 Fibrations between Domains

Although the fact that the monotone automata coincide exactly with the split right �-

brations in AutoWk provides some evidence that the latter is the correct categorical

notion, stronger evidence comes from the fact that essentially the same coincidence oc-

curs for domains of computations of monotone automata and split right �brations in a

suitably de�ned 2-category of domains. The purpose of this section is to develop these

results.

4.1 Con
ict Event Orderings

We begin by recalling some de�nitions from [9]. Suppose D = (D;v) is a partially ordered

set. An interval of D is a pair (d; d

0

) 2 D�D with d v d

0

. A prime (or covering) interval

is an interval (d; d

0

) with d @ d

0

and such that for no d

00

2 D do we have d @ d

00

@ d

0

.

We say that an interval I = (d; d

0

) is t-prime if there exists a �nite set of prime intervals

f(d; d

1

); . . . ; (d; d

n

)g such that d

0

=

F

fd

1

; . . . ; d

n

g. Call two intervals I = (d

0

; d

1

) and

J = (d

0

0

; d

0

1

) coinitial if d

0

= d

0

0

. Coinitial intervals I = (d

0

; d

1

) and J = (d

0

; d

0

1

) are called

consistent if the set fd

1

; d

0

1

g has an upper bound. Call coinitial t-prime intervals I and

J orthogonal if they are consistent, and there is no prime interval (d

0

; d

00

1

) with d

00

1

v d

1

and d

00

1

v d

0

1

. We say that D is �nitely consistently complete if every �nite subset U of D

having an upper bound, has a supremum

F

U . If D is �nitely consistently complete, and

if intervals I = (d

0

; d

1

) and J = (d

0

; d

0

1

) are consistent, then let I n J denote the interval

(d

0

1

; d

1

t d

0

1

).

Suppose D is a nonempty, �nitely consistently complete poset with the following

additional property:

1. I n J is a prime interval whenever I and J are distinct, consistent prime intervals.

We may then de�ne � to be the least equivalence relation on prime intervals of D, such

that I � I n J whenever I and J are distinct and consistent.

A con
ict event ordering is a nonempty, �nitely consistently complete poset D having

property (1) above and in addition having the properties:

2. I � J implies I = J , whenever I and J are coinitial prime intervals.

3. If I, I

0

, J , J

0

are prime intervals such that I � I

0

, J � J

0

, I and J are coinitial, and

I

0

and J

0

are coinitial, then I and I

0

are consistent i� J and J

0

are consistent.

A weak morphism from a con
ict event ordering D to a con
ict event ordering D

0

is

a function f : D ! D

0

that preserves all �nite suprema existing in D. A morphism from

D to D

0

is a weak morphism f : D! D

0

with the additional properties:

1. If I is a t-prime interval of D, then f(I) is a t-prime interval of D

0

.

2. If t-prime intervals I, J are orthogonal in D, then f(I) and f(J) are orthogonal in

D

0

.

Let EvOrd denote the category of con
ict event orderings and morphisms, and let

EvOrdWk denote the category of con
ict event orderings and weak morphisms. Note

that the map taking a poset to its ideal completion determines an equivalence of categories

between EvOrd and the category EvDom of con
ict event domains de�ned in [9]. The

adjoint maps a con
ict event domain to its �nite basis. Since we shall have no need for

morphisms that map �nite elements to in�nite elements, we prefer here to dispense with

in�nite elements entirely, and work with the category EvOrd instead of EvDom.

We showed in [9] that the category EvOrd is �nitely complete. We also showed the

following:

Proposition 4.1 If A is an automaton, then the set HA of (�nite) computations of A

from its initial state, partially ordered by pre�x, is a con
ict event ordering. Moreover,

the map taking A to HA extends to a functor H : Auto! EvOrd, which is right-adjoint

to a full and faithful embedding, with unit an isomorphism.

We add that although the functor H extends to a functor from AutoWk to

EvOrdWk, the adjunction does not.

4.2 EvOrdWk as a 2-Category

The categories EvOrd and EvOrdWk have partially ordered homs, with strict, mono-

tone composition. Hence they are actually 2-categories. Although EvOrd is �nitely

complete as a 1-category, it is not �nitely 2-categorically complete, for essentially the

same reasons as for Auto.

Proposition 4.2 The 2-category EvOrdWk has a comma object for every opspan.

Proof { A comma object g=f for an opspan Y

g

�!D

f

 �X in EvOrdWk is g=f = f(b; a) :

gb v fag, ordered componentwise, and equipped with the evident projections and 2-cell.

It is necessary to verify that g=f is a con
ict event ordering|this can be done by a direct

check of the axioms, using the fact that f and g preserve �nite suprema.

The same result concerning 2-pullbacks holds for EvOrdWk as for AutoWk:

Proposition 4.3 Lemma 3.3 holds for EvOrdWk.

Next, we describe the doctrine R on spans in EvOrdWk and obtain a characteri-

zation of its algebras, the split right �brations in EvOrdWk. The object map of R takes

a span Y

g

 �D

f

�!X to the span Y

g

0

 �RD

f

0

�!X, where

RD ' f(d; x) 2 D �X : fd v xg;

the map f

0

takes (d; x) to x 2 X, and g

0

takes (d; x) to gd 2 Y . The unit � : 1 ! R has

components �

D

: D ! RD that take d to (d; fd). The multiplication � : RR ! R has

components �

D

: RRD ! RD that take ((d; x); x

0

) to (d; x

0

).

Theorem 3 A span Y

g

 �D

f

�!X in EvOrdWk is a split right �bration i� the following

condition holds:

� For all d 2 D and all x � fd, there exists an element d t x of D, which is the least

d

0

� d with fd

0

� x. Moreover, f(d t x) = x and g(d t x) = gd.

Proof { Suppose the condition. Let h : RD ! D be the map taking (d; x) 2 RD to

dt x 2 D. It is easy to check that h preserves �nite suprema, hence is a weak morphism.

Since f(d t x) = x and g(d t x) = gd, it follows that h is an arrow of spans. Also, if

fd v x v x

0

then dtx

0

= (dtx)tx

0

, so h��D = h�Rh. Finally, h(�

D

(d)) = h(d; fd) = d,

so h is a right cleavage for D.

Conversely, suppose h : RD ! D is a right cleavage for D. Then h is left-adjoint to

�D : D ! RD, with counit the identity. It follows by properties of adjunctions that for

all (d; x) 2 RD, the element h(d; x) of D is the least d

0

� d with fd

0

� x. Since h is an

arrow of spans, we have also f(h(d; x)) = x and g(h(d; x)) = gd.

4.3 Connection with Automata

In this section, we show that the \unwinding functor" H, which takes each automaton

A to the poset HA of its computations from the initial state, preserves and re
ects split

right �brations. This gives a connection, as in [9], between an \operational" semantics

of data
ow networks, de�ned in terms of automata, and a more \denotational," order-

theoretic semantics. The proofs of the results in this section involve a detailed examination

of the structure of the posets of computations of monotone automata. It ought to be

possible to prove at least some of these results categorically, though at present it is not

clear to the author what satisfactory categorical versions of the proofs would look like.

For the techniques to prove the following result, the reader is referred to [12]:

Lemma 4.4 Suppose Y

g

 �A

f

�!X is a monotone automaton. For each computation

 : q

i

! r of A and trace x 2 X

�

with Hf
 v x, there exists a least computation
 t x

such that
 v
 t x and x v Hf(
 t x). Moreover, Hf(
 t x) = x, Hg(
 t x) = Hg
,

and the map taking (
; x) to
 t x is an EvOrd-morphism from R(HA) to HA.

The following result makes use of technical properties of con
ict event orderings. A

complete proof would be rather lengthy, so we just sketch the main ideas.

Lemma 4.5 Let X and Y be concurrent alphabets. Suppose HY

g

 �D

f

�!HX is a span

in EvOrd, and suppose h

D

: RD ! D is an EvOrd-morphism that is also an R-algebra

structure on D. Then there exists a monotone automaton Y

g

0

 �A

f

0

�!X, and an order-

isomorphism � : HA! D, such that g� = Hg

0

and f� = Hf

0

.

Proof { (Sketch) We �rst observe the following facts about the poset D:

1. Every prime interval (d; d

0

) in D satis�es exactly one of the following two conditions:

(a) d

0

= h

D

(d; fd

0

), with (fd; fd

0

) a prime interval of HX.

(b) fd = fd

0

.

Call intervals of type (a) input intervals, and those of type (b) noninput intervals.

2. If I is an input interval (d; h

D

(d; x)) and J is a noninput interval (d; d

0

), then I ? J .

Moreover, I n J = (d

0

; h

D

(d

0

; x)) and J n I = (h

D

(d; x); h

D

(d

0

; x)).

3. If I = (d; d

0

) is a noninput prime interval, and fd

0

v x, then (h

D

(d; x); h

D

(d

0

; x)) is

also a noninput prime interval.

The automaton A is then constructed as follows:

� The alphabet of A is E
 X, where E is the set of all �-equivalence classes of

noninput intervals of D and [I]k[J] in E i� there exist I

0

= (d; d

0

) 2 [I] and J

0

=

(d; d

00

) 2 [J] such that I

0

? J

0

.

� The states of A are the elements of RD, with (?; �) as the initial state.

� The transitions of A are of two types:

1. If e 2 X, then for all states (d; x) of A there is a transition

(d; x)

e

�!(h

D

(d; ex); ex) of A.

2. If [I] 2 E, then A has a transition (d; x)

[I]

�!(d

0

; x) whenever (d; d

0

) 2 [I].

Veri�cation that A satis�es the commutativity condition, hence is an automaton, requires

a case analysis on the various ways in which actions of A can be concurrent. These

arguments make use of the properties of D stated above, plus the hypothesis that h

D

is

an R-algebra structure on D.

Let the map f

0

: A! X take each state of A to the unique state ofX, and on actions,

let f

0

be the restriction to X. Let the map g

0

: A! Y take each state of A to the unique

state of Y . On actions, let g

0

be the map that takes e 2 X to ; and takes each [I] 2 E,

where I = (d; d

0

), to the trace gd

0

n gd 2 Y

�

, which must be in Comm(Y) because the

EvOrd-morphism g preserves t-prime intervals. It then follows from the de�nitions that

A has the receptivity property, hence the span Y

g

0

 �A

f

0

�!X is a monotone automaton.

To complete the proof, one may check that the map � : HA ! D that takes each

computation
 : (?; �)! (d; x) of A to d 2 D, is an isomorphism of spans in EvOrdWk,

from the span HA to the span D. The veri�cation of this fact involves the observation

that prime intervals (d; d

0

) in D correspond exactly to transitions of A from (d; fd) to

(d

0

; fd

0

), and thus the computation sequences of A from state (?; �) correspond to covering

chains from ? in D. Moreover, prime intervals (d; d

0

) and (d; d

00

) in D are orthogonal i�

the corresponding transitions of A are for commuting actions. These facts allow us to

prove that the map � is in fact an arrow of spans in EvOrdWk, with an inverse that is

also an arrow of spans in EvOrdWk.

We can now answer the question raised at the end of our previous paper [9], con-

cerning a characterization of the data
ow-like spans in EvOrd.

Theorem 4 Suppose X and Y are concurrent alphabets. A span D from HX to HY

in EvOrd is HA for some monotone automaton A i� D is a split right �bration in

EvOrdWk, having an EvOrd-morphism as cleavage.

5 Conclusion

We have shown that spans arising as behaviors of data
ow networks can be characterized

in terms of split right �brations, both in a 2-category of automata and a 2-category of

domains. This characterization should make it possible to give categorical proofs that this

class of spans is closed under network-forming operations, such as parallel and sequen-

tial composition, and feedback. We hope also that it will facilitate the continuity proofs

required in the development of a semantics for recursively de�ned networks. There re-

mains, however, the problem of understanding the correct way to formulate the universal

properties satis�ed by the feedback operation.

It is a bit annoying that our characterizations had to be stated in terms of the 2-

categories AutoWk and EvOrdWk and their sub-2-categories Auto and EvOrd. For

intuitive reasons, though, it seems necessary that the results be stated in this way. In this

paper, we tried to make the simplest extensions to the 2-categories Auto and EvOrd

that would show the connection with �brations. Perhaps a cleaner (though less con-

crete) formulation of the results might be achieved by making AutoWk and EvOrdWk

much larger, and then giving categorical characterizations of Auto and EvOrd as sub-

2-categories. For example, we expect that the 2-category Cts of \concurrent transition

systems" [11, 12] would be a suitable replacement for AutoWk.

References

[1] A. Carboni and R. F. C. Walters. Cartesian bicategories I. Journal of Pure and

Applied Algebra, 49:11{32, 1987.

[2] J. W. Gray. Fibred and co�bred categories. In Proc. Conference on Categorical

Algebra at La Jolla, pages 21{83, Springer-Verlag, 1966.

[3] A. Grothendieck. Cat�egories �br�ees et descente. In S�eminaire de G�eom�etrie

Alg�ebrique de l'Institute des Hautes

�

Etudes Scienti�ques, Paris 1960/61 (SGA 1),

pages 145{194, Springer-Verlag, 1971.

[4] G. Kahn. The semantics of a simple language for parallel programming. In J. L.

Rosenfeld, editor, Information Processing 74, pages 471{475, North-Holland, 1974.

[5] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In B.

Gilchrist, editor, Information Processing 77, pages 993{998, North-Holland, 1977.

[6] G. M. Kelly and R. H. Street. Review of the elements of 2-categories. In Lecture

Notes in Mathematics 420, pages 75{103, Springer-Verlag, 1974.

[7] A. Mazurkiewicz. Trace theory. In Advanced Course on Petri Nets, GMD, Bad

Honnef, September 1986.

[8] P. Panangaden and E. W. Stark. Computations, residuals, and the power of indeter-

minacy. In T. Lepisto and A. Salomaa, editors, Automata, Languages, and Program-

ming, pages 439{454, Springer-Verlag. Volume 317 of Lecture Notes in Computer

Science, 1988.

[9] E. W. Stark. Compositional relational semantics for indeterminate data
ow networks.

In Category Theory and Computer Science, pages 52{74, Springer-Verlag. Volume 389

of Lecture Notes in Computer Science, Manchester, U. K., 1989.

[10] E. W. Stark. Concurrent transition system semantics of process networks. In Four-

teenth ACM Symposium on Principles of Programming Languages, pages 199{210,

January 1987.

[11] E. W. Stark. Concurrent transition systems. Theoretical Computer Science, 64:221{

269, 1989.

[12] E. W. Stark. Connections between a concrete and abstract model of concurrent

systems. In Fifth Conference on the Mathematical Foundations of Programming Se-

mantics, Springer-Verlag. Lecture Notes in Computer Science, New Orleans, LA,

1990. (to appear).

[13] E. W. Stark. A simple generalization of Kahn's principle to indeterminate data
ow

networks. In M. Z. Kwiatkowska, M. W. Shields, and R. M. Thomas, editors, Se-

mantics for Concurrency, Leicester 1990, pages 157{176, Springer-Verlag, 1990.

[14] R. H. Street. Fibrations and Yoneda's lemma in a 2-category. In Lecture Notes in

Mathematics 420, pages 104{133, Springer-Verlag, 1974.

[15] R. H. Street. Fibrations in bicategories. Cahier de Topologie et G�eometrie

Di��erentielle, XXI-2:111{159, 1980.

