
Concurrent Transition System

Semantics of Process Networks

Eugene W. Stark

State University of New York at Stony Brook

Stony Brook, NY 11794

Abstract

Using concurrent transition systems [Sta86],

we establish connections between three models of

concurrent process networks, Kahn functions, in-

put/output automata, and labeled processes. For each

model, we de�ne three kinds of algebraic operations

on processes: the product operation, abstraction op-

erations, and connection operations. We obtain ho-

momorphic mappings, from input/output automata

to labeled processes, and from a subalgebra (called

\input/output processes") of labeled processes to

Kahn functions. The proof that the latter map-

ping preserves connection operations amounts to a

new proof of the \Kahn Principle." Our approach

yields: (1) extremely simple de�nitions of the pro-

cess operations; (2) a simple and natural proof of

the Kahn Principle that does not require the use

of \strategies" or \scheduling arguments"; (3) a se-

mantic characterization of a large class of labeled

processes for which the Kahn Principle is valid, (4)

a convenient operational semantics for nondetermi-

nate process networks.

1 Introduction

A \data
ow network" consists of a collection of concur-

rently executing processes that communicate data values

over channels. In Kahn's model [Kah74,KM77,Mac79] for

such networks, a process with m-input and n-output chan-

nels is represented by a continuous function � : H

m

! H

n

,

where H is a suitable cpo of \channel histories." The the-

ory of continuous functions on cpo's permits elegant de�-

nitions to be given for various kinds of operations on pro-

cesses. In particular, the operation of composing processes

1

into a network can be de�ned in terms of least �xed points

of continuous functionals. The relationship between pro-

cess composition and least �xed point has been referred to

[Par82,Fau82] as the \Kahn Principle."

Kahn's model is highly satisfactory as a semantic model

for data
ow networks, except in one respect: it is insu�-

ciently general in the sense that only \determinate" pro-

cesses (those with functional input/output behavior) can

be represented. However, nondeterminate processes such

as \merge," which merges streams of data values arriv-

ing on two input channels into a single output stream,

are also interesting and important in applications. At-

tempts to extend Kahn's model to the nondeterminate case,

e.g. [Kel78,BA81,Par82,Pra82,Fau82,BM82,Bro83,KP84],

[SN85,Kok86], have not been entirely successful.

To satisfactorily resolve the problem of semantics of

nondeterminate process networks, not one, but two math-

ematical models, an operational and a denotational model,

are necessary, along with a mapping that takes each object

of the operational model to a corresponding element of the

denotational model, in such a way that the relevant opera-

tions on processes are preserved. If such a mapping exists,

then we may say that the denotational model is correct with

respect to the operational semantics. Often researchers

have constructed denotational models and performed sub-

stantial investigations of their properties, without showing

their model to be correct with respect to a suitable opera-

tional model. Even Kahn's original paper avoids the issue

of proving the correctness of his �xpoint characterization

of the behavior of process networks, referring the reader

instead to \a similar set up" in work of Cadiou [Cad72].

One possible reason why formal operational models have

often not been considered, is that existing such models are

mathematically inconvenient, and do not facilitate proofs

of relationships with more abstract, denotational models.

We would argue that this mathematical inconvenience is

due in large part to the problems that arise when inter-

leaved step models of concurrency are combined with a de-

sire to treat in�nite computations. This combination leads

to a need for \strategies," \scheduling arguments," \fair-

ness predicates," and their ilk, with consequent complica-

tions in proofs. For example, Faustini [Fau82] requires the

notion of a winning strategy for a two-player in�nite game

of perfect information to relate his operational model to

Kahn's model.

In this paper, we show how an operational model for

2

concurrent process networks can be based on the \concur-

rent transition systems" of [Sta86]. The convenience and

utility of this approach is demonstrated by the following

results:

� We are able to give extremely simple de�nitions of

the operations of product, abstraction, and connection

on processes. These operations allow various ways of

constructing process networks to be modeled.

� We can give a straightforward and natural proof of

the Kahn Principle. In particular, this proof does not

require any complicated scheduling or fairness argu-

ments.

� We obtain connections between three di�erent models

of concurrent process networks: Kahn's model, an in-

put/output automaton model with a classical automa-

ta-theoretic
avor reminiscent of [AM75,SAM83], and

a labeled process model which is closely related to the

labeled transition system models that have been used

in the study of CCS and CSP [Mil80,Hoa78,BR83].

� We derive a reasonably simple semantic characteriza-

tion of a large class of labeled processes for which the

Kahn Principle is valid.

� We obtain a convenient operational model of nonde-

terminate process networks.

The fundamental innovation that makes our approach

an improvement over previous work is the use of \concur-

rent transition systems," which are ordinary transition sys-

tems that have been augmented with concurrency informa-

tion. The concurrency information in a concurrent transi-

tion system induces a congruence on the collection of all

computation sequences of the underlying ordinary transi-

tion system, in which two computation sequences are con-

gruent exactly when they represent two possible sequential

interleavings of the same underlying concurrent computa-

tion. By factoring the collection of computation sequences

by this congruence, we are able to obtain a convenient def-

inition of computations as ideals of a partial order, and

to replace the troublesome notion of a \fair computation

sequence" with the more tractable notion of a \maximal

ideal."

3

2 Concurrent Transition Systems

In this section we de�ne concurrent transition systems, and

summarize their properties, derived in a previous paper

[Sta86]. A concurrent transition system (CTS) is an or-

dinary transition system (i.e. a graph), which is equipped

with a \translation operation" " that captures concurrency

information, and a collection of \identity arrows" that be-

have as identities for " in a certain sense. The objects of the

transition system are \states," and the arrows are \transi-

tions." If f and g are two transitions from a single state

q, then f and g are either \inconsistent," in which case

they represent incompatible nondeterministic choices that

can be made from q, or \consistent," in which case f and

g represent actions that might appear as part of a single

concurrent computation. In case f and g are consistent,

then we can form the transitions f " g (f \after" g) and

g " f . Intuitively, f " g can be thought of as what remains

of the transition f after g has occurred. For example, if f

and g represent steps of independent processes A and B,

respectively, in a system of processes, that can be executed

from a global system state q, then f " g represents the same

step of process A as f does, except that f " g is executed

starting from the state that results after g is executed from

q.

We now give the formal axioms for a CTS, and sketch

the development of their consequences.

A graph is a tuple G = (O;A;dom; cod), where O is

a set of objects, A is a set of arrows, and dom; cod are

functions from A to O, which map each arrow to its domain

and codomain, respectively. Arrows f; g of G are called

composable if cod(f) = dom(g) and coinitial if dom(f) =

dom(g). Let Coin(G) denote the set of all coinitial pairs of

arrows of G.

If G = (O;A;dom; cod) is a graph, then de�ne the aug-

mented graph G

y

= (O

y

; A

y

;dom

y

; cod

y

) to be the graph

de�ned by: O

y

= O [f
g, A

y

= A [f!

q

: q 2 O

y

g,

dom

y

(!

q

) = q, and cod

y

(!

q

) =
, where O \ f
g = ;, and

A \ f!

q

: q 2 O

y

g = ;.

A concurrent transition system is a triple (G

y

; id; "),

where

� G = (O;A;dom; cod) is a graph, called the underly-

ing graph. The elements of O

y

(resp. O) are called

(proper) states and the elements of A

y

(resp. A) are

4

called (proper) transitions.

� id : O

y

! A

y

maps each q 2 O

y

to a distinguished

identity transition id

q

.

� ": Coin(G

y

)! A

y

is a function, called the translation

operation. We write f " g for " (f; g).

These data are required to have the following properties:

1. For all q 2 O

y

, and all coinitial (f; g) 2 A

y

� A

y

,

dom(id

q

) = cod(id

q

) = q; dom(f " g) = cod(g); and

cod(f " g) = cod(g " f).

2. For all f : q ! r in A

y

, id

q

" f = id

r

; f " id

q

= f ;

f " f = id

r

; !

q

" f = !

r

; and f " !

q

= id

= !

.

3. For all coinitial f; g; h 2 A

y

, we have

(h " f) " (g " f) = (h " g) " (f " g):

4. For all f; g 2 A

y

with f : q ! r and g : q ! s, if

f " g = id

s

and g " f = id

r

, then f = g.

Coinitial transitions f; g are called consistent if f " g 6=

!

cod(g)

(equivalently, if g " f 6= !

cod(f)

). Note that every

graph lifts to a CTS in such a way that f; g are consistent

i� f = g or one is an identity. A CTS M is determinate if

every coinitial pair of transitions of M is consistent.

De�ne the relation � on the transitions of a CTS by:

f � g i� f; g are coinitial and f " g = id

cod(g)

. We call �

the pre�x relation. It can be shown that, for each q, the

pre�x relation partially orders the set M(q; �) of all proper

transitions of M with domain q. We say that a transition

h is a join of the coinitial transitions f; g if f � h, g � h,

h " f = g " f , and h " g = f " g. It can be shown that

joins coincide with least upper bounds under pre�x order,

and we write f _ g to denote the join of f and g when it

exists.

Suppose f; g are composable. We say that a transition

h is a composite of f; g if f � h and h " f = g. It can be

shown that a composite of f; g, if it exists, is unique, and

we denote it by fg. A CTS is complete if every composable

pair of transitions has a composite. It can be shown that

if either of f(g " f), f _ g exists, then the other does,

also, and the two are equal. Thus completeness implies

join-completeness.

5

A large number of algebraic laws, relating translation,

join, and composition, hold in a complete CTS. In short,

these laws can be summarized by saying that a complete

CTS is a category [ML71,AM75] with a terminal object

(
), pushouts (given by "), and in which all arrows are epi

and the only isomorphisms are identities. In later sections,

the laws summarized below will be used frequently, often

without explicit mention.

Proposition 1 The following laws hold in a complete

CTS:

1. For all coinitial f; g; h,

(a) h " (f _ g) = (h " f) " (g " f).

(b) (f _ g) " h = (f " h) _ (g " h).

2. For all f; g; h, if f; h are coinitial and f; g are com-

posable, then

(a) h " fg = (h " f) " g.

(b) fg " h = (f " h)(g " (h " f)).

2.1 Constructions in CTS

Suppose M and M

0

are CTS's, with underlying graphs G

and G

0

, respectively. A CTS-morphism from M to M

0

is a

graph homomorphism F : G

y

! (G

0

)

y

, such that

1. F (
) =
, and F (q) 6=
 for all proper states q ofM .

2. F (id

q

) = id

0

F (q)

and F (!

q

) = !

F (q)

for all states q of

M .

3. F (f " g) = F (f) "

0

F (g) for all transitions f; g of M .

It is easily veri�ed that identity graph homomorphisms are

CTS-morphisms, and that the class of CTS-morphisms is

closed under composition. Thus the class of all concurrent

transition systems, equipped with their morphisms, forms

a category CTS. In the sequel, the term \morphism" will

mean \CTS morphism" unless otherwise speci�ed.

The category CTS can be shown to have an initial and

terminal object, all small coproducts, and all small limits.

This means that a large number of interesting operations

can be de�ned on CTS, using the algebraic language of

concurrent transition systems and their morphisms. In this

paper, however, we shall need only the terminal object, the

product construction, and the equalizer construction.

6

2.1.1 Terminal Object

Let 1 be the CTS whose underlying graph has just one

proper state, {, and one proper transition, id

{

.

Proposition 2 The CTS 1 is a terminal object in the cat-

egory CTS.

2.1.2 Product

Suppose M

1

and M

2

are CTS's. Let

M

1

�M

2

= ((G

1

�G

2

)

y

; id

1

� id

2

; ");

where " is de�ned by the following condition:

� Suppose (f

1

; f

2

) and (g

1

; g

2

) are coinitial transitions

of (G

1

�G

2

)

y

. If both pairs f

1

; g

1

and f

2

; g

2

are con-

sistent, then (f

1

; f

2

) " (g

1

; g

2

) = (f

1

"

1

g

1

; f

2

"

2

g

2

). If

one of the pairs f

1

; g

1

or f

2

; g

2

is not consistent, then

(f

1

; g

1

) " (f

2

; g

2

) = !

(cod(f

2

);cod(g

2

))

.

We call M

1

�M

2

the product of M

1

and M

2

.

Proposition 3 If M

1

and M

2

are CTS's, then M

1

�M

2

is a CTS. Moreover, M

1

�M

2

, equipped with the evident

projection morphisms, is a categorical product of M

1

and

M

2

in CTS.

2.1.3 Equalizer

Suppose M = (G

y

; id; ") and N are CTS's, and F

1

; F

2

:

M ! N are morphisms. De�ne

M [F

1

= F

2

] = ((G

0

)

y

; id

0

; "

0

)

so that:

� The graph G

0

is the subgraph of G consisting of all

proper states and proper transitions of M that have

equal images under F

1

and F

2

.

� The map id

0

is the restriction of id to (G

0

)

y

.

� The operation "

0

is the restriction to (G

0

)

y

of the op-

eration " on G

y

.

Note that for each q in G

0

, the transition id

q

has equal

images under F

1

and F

2

by de�nition of a morphism, so that

it is in fact in G

0

. Also, if f; g are coinitial transitions in

(G

0

)

y

, then the fact that F

1

(f) = F

2

(f) and F

1

(g) = F

2

(g),

plus the fact that F

1

and F

2

are morphisms, shows that

F

1

(f " g) = F

2

(f " g), and hence f " g is in (G

0

)

y

.

7

Proposition 4 If M is a CTS and F

1

; F

2

: M ! N are

morphisms, then M [F

1

= F

2

] is a CTS. Moreover, the in-

clusion of M [F

1

= F

2

] in M is a categorical equalizer of F

1

and F

2

in CTS.

2.2 Completion of a CTS

Every CTS M freely generates a complete CTS M

�

, which

has the same set of states as M and whose transitions can

be thought of as the �nite concurrent computations of M .

For this paper, we merely sketch the details of the con-

struction. Given a CTS M , form G

�

, the \transitive clo-

sure of," or the \free category generated by," the under-

lying graph G. The graph G has the same objects as M ,

and has as arrows the �nite \composable" sequences of ar-

rows of M (i.e. the ordinary �nite computation sequences

of M). Extend the translation operation " by induction

to G

�

. The extended translation operation induces a con-

gruence � on G

�

, where f � g i� f " g and g " f are

both sequences of identities. Factoring with respect to this

congruence yields the CTSM

�

. As a result of the construc-

tion, every morphism F : M ! N extends uniquely to a

morphism F

�

:M

�

! N .

Proposition 5 Every transition f ofM

�

is either an iden-

tity transition, or is of the form gh, where g is a transition

of M

�

and h is a transition of M .

De�ne a property P of transitions ofM

�

to be inductive

if whenever P holds for all proper pre�xes of a transition f ,

then P holds for f as well. We have the following induction

principle for M

�

.

Proposition 6 If P is an inductive property of transitions

of M

�

, then P holds for all transitions of M

�

.

It is helpful to notice that the arrows of a concurrent

transition system have many of the same formal prop-

erties (except for the Church-Rosser property), if f "

g is interpreted as the \residual of the reduction f af-

ter the reduction g," as do the \one-step reductions" in

the �-calculus, and that the de�nition of � generalizes

the de�nition of \strongly equivalent" reduction sequences

[Lev78,BL79,Bar81].

8

2.3 Computations as Ideals

A subset
 of a partially ordered set (S;�) is directed if
 is

nonempty and every �nite subset of
 has an upper bound

in
. A subset
 of S is downward-closed if for all f 2
, if

g � f , then g 2
. An ideal of (S;�) is a downward-closed,

directed subset of S . It is easy to verify that if f is an

element of S , then the set of all g 2 S such that g � f is

an ideal. This ideal is called the principal ideal generated

by f .

The completion M

�

of a CTS M is interesting because

it permits us to give a very convenient de�nition of the

computations of M . Formally, suppose M is a CTS and

q is a state of M . A q-computation of M is an ideal
 of

M

�

(q; �). A q-computation
 is �nite if it is the principal

ideal generated by a transition f : q ! r ofM

�

. In this case,

the state r is called the �nal state of
. Computations that

are not �nite are called in�nite. A standard consequence of

the ideal construction is that the set of all q-computations

of a CTSM , under inclusion order, is an algebraic directed-

complete partial order, whose isolated elements are exactly

the �nite computations [Gue81].

De�ne a subset
 ofM

�

(q; �) to be consistent if for every

�nite subset � of
, the transition

W

� is not !

q

.

Proposition 7 Suppose
 is a consistent subset of

M

�

(q; �). Then there exists a least computation
 of M

such that
 �
.

3 Semantics of Concurrent Pro-

cess Networks

In this section we de�ne three semantic models for con-

current process networks. The \Kahn function" model is

Kahn's denotational model for networks of determinate pro-

cesses. The \input/output automaton" model, in which

processes are modeled using a kind of generalized state-

transition function, or \dynamics," has a classical automa-

ta-theoretic
avor. The \labeled process" model is an op-

erational model similar to the \labeled transition system"

models that have been used to describe the languages CSP

and CCS.

9

3.1 History Monoids

We shall ultimately wish to assign, to each computation of

a process, a corresponding \history" of the interesting oc-

currences in that computation. The input/output behavior

of a process will then be obtained in terms of these his-

tories. For example, in a data
ow model such as Kahn's,

the interesting occurrences are the exchange of data values

between processes. Alternatively, in CSP, the interesting

occurrences are the communication events that are shared

between processes. Usually, when ordinary transition sys-

tems are used as the underlying operational model, histories

are de�ned to be sequences of events. For the concurrent

transition system model, though, it is natural to use histo-

ries that are elements of a \history monoid," which we now

de�ne.

A history monoid is a monoidN with the following prop-

erties:

1. For all u; v;w 2 N , if uv = uw, then v = w.

2. If v

N

is the pre�x relation induced by the monoid

operation (i.e. u v

N

v i� 9w(uw = v)), then v

N

is

a partial order with respect to which each pair u; v

with an upper bound has a least upper bound.

We use ?

N

to denote the identity, v

N

to denote the pre�x

relation, and t

N

to denote the least upper bound operation,

of a history monoidN . Subscripts will be omitted when the

monoid is clear from the context.

The ideal space of a history monoid N is the cpo N of

ideals of N , ordered by inclusion.

An example of a history monoid is the free monoid �

�

generated by an set �. The corresponding ideal space is

the cpo �

1

of all �nite and in�nite strings over �, with the

pre�x order. Thus, history monoids generalize the usual

de�nition of histories as sequences of events. Another ex-

ample of a history monoid is the monoid [C ! �

�

] of \�-

nite channel histories," which are functions from a set C (of

\channels") to �

�

. The monoid identity and multiplication

are inherited pointwise from �

�

. The corresponding ideal

space is the cpo [C ! �

1

].

It is easy to see that the set of transitions of a complete

CTS with exactly one proper state, is a history monoid.

Conversely, it can be shown that any history monoid can

be made into the set of transitions of a one-proper-state

complete CTS by taking the monoid identity as the proper

10

identity transition id, letting u; v be consistent i� u t v

exists, and then de�ning u " v = (utv)nv, where (utv)nv

denotes the unique w such that vw = (u t v). We may

therefore consider the collection of history monoids as a full

subcategory of CTS. It will be convenient to switch freely

between the view of a history monoid as a monoid and as a

CTS. When viewing a history monoid N as a CTS, we use

>

N

to denote the arrow from the single proper state of N

to
.

History monoids are closely related to the \positive

semirings" de�ned by Main and Benson [MB84]. Essen-

tially, a history monoid N is a positive semiring in which

there is a further connection between + and �; namely, +

is least upper bound with respect to the pre�x order in-

duced by �, and in which a left-cancellation law holds for

�. History monoids are also closely related to the \synchro-

nization algebras" of Winskel [Win84b,Win86], In fact, the

set of proper transitions of a complete CTS with just one

proper state q can be regarded as a synchronzation algebra

if we identify Winskel's � with our arrow id

q

, and Winskel's

operation � with our operation _. (The converse is not

possible, in general, since complete CTS's are more highly

structured than synchronization algebras.) We use history

monoids below in the de�nition of connection of labeled

processes in essentially the same way as Winskel uses syn-

chronization algebras to de�ne parallel composition of syn-

chronization trees. We �nd it an advantage that the need

for a separate notion of synchronization algebra is avoided.

3.2 Kahn Functions

Suppose X;Y are history monoids. An (X;Y)-Kahn func-

tion is a function � : X ! Y , which is continuous with

respect to the cpo structure on X and Y .

In this paper, we are concerned with three kinds of op-

erations on processes:

� The product operation, with which processes are jux-

taposed into a single network with each process run-

ning concurrently with and independently of the oth-

ers.

� Abstraction operations, with which detail in a pro-

cess or network is suppressed. (Example: hiding an

internal channel.)

11

� Connection operations, with which processes are syn-

chronized in various ways. (Example: \feeding back"

an output channel to an input channel.)

A fourth class of interesting operations are the recursion

operations, in which processes are built that (conceptually)

have copies of themselves as components. We leave the

treatment of recursion, and the related problem of networks

whose structure changes dynamically during execution, to

a future paper.

3.2.1 Product

Let �

1

be an (X

1

; Y

1

)-Kahn function, and �

2

an (X

2

; Y

2

)-

Kahn function. The product of �

1

and �

2

is the (X

1

�

X

2

; Y

1

� Y

2

)-Kahn function �

1

� �

2

.

3.2.2 Abstraction

Suppose � is an (X;Y)-Kahn function, and � : Y ! Y

0

is a

morphism. The abstraction of � by � is the Kahn function

� � �, where � : Y ! Y

0

is the unique continuous extension

of �.

3.2.3 Connection

Suppose � is an (X �C;Y)-Kahn function, and � : Y ! C

is a morphism. The connection of � by � is the (X;Y)-

Kahn function �[�] which is the least �xed point �� of the

continuous functional

� : [X ! Y]! [X ! Y];

de�ned by �() = � � (id

X

� (� �)).

3.3 Input/Output Automata

Suppose M is a CTS. An endomorphism F : M ! M is

orthogonal if for all transitions f of M , if F (f) is an iden-

tity, then so is f . A dynamics is a monoid homomorphism

D : X ! CTS

o

(M;M), where X is a history monoid and

CTS

o

(M;M) is the monoid of orthogonal endomorphisms

of M .

Suppose X and Y are history monoids. An (X;Y)-

input/output automaton is a four-tuple A = (M; I;D;O),

where M is a CTS, called the underlying CTS, D : X !

CTS

o

(M;M) is a dynamics, I : 1 ! M is a morphism,

called the initial state map, and O :M ! Y is a morphism,

12

called the output map, such that for each x 2 X we have O�

D(x) = O. The elements ofX are called the input histories,

and the elements of Y are called the output histories, of A.

An input/output automaton is called a Kahn automaton if

its underlying CTS is determinate.

It is evident that the de�nition of a dynamics general-

izes the classical automata-theoretic de�nition (e.g. [Eil74])

of a \state-transition function" or \action" as a monoid

homomorphism � : X ! Set(Q;Q), or equivalently, as

a map � : X � Q ! Q such that �(?

X

; q) = q and

�(xy; q) = �(y; �(x; q)).

1

Our generalized dynamics acts

not only on states of M , but also on transitions of M .

To exemplify the above de�nitions, we give a construc-

tion that yields, for each morphism � : X ! Y , an (X;Y)-

Kahn automaton A

�

= (M; I;D;O).

De�ne M as follows:

� Proper states: all elements (x; y) of X � Y .

� Proper transitions: all triples (x; y; v) 2 X � Y � Y

such that either v = ?

Y

, or else yv v �(x). De�ne

dom(x; y; v) = (x; y) and cod(x; y; v) = (x; yv).

� Proper identity transitions: all transitions

(x; y;?

Y

) : (x; y) ! (x; y):

� Translation: (x; y; v) and (x; y; v

0

) are consistent i� v

and v

0

are consistent, in which case

(x; y; v) " (x; y; v

0

) = (x; yv

0

; v " v

0

):

Let I : 1 ! M map the single state { of 1 to the state

(?

X

;?

Y

) of M . Let O : M ! Y map each transition

(x; y; v) of M to v 2 Y . Let D : X ! CTS(M;M) be

de�ned so that if u 2 X and (x; y; v) is a transition of M ,

then D(u)(x; y; v) = (xu; y; v).

We will show (Theorem 3), that the automaton A

�

actually has � (more precisely, its continuous extension

� : X ! Y) as its input/output behavior.

Versions of the product, abstraction, and connection op-

erations are easily de�ned for input/output automata.

1

We would like to de�ne a dynamics as a morphism D

0

: X �M !

M , so that the de�nition becomes a special case of that of Arbib and

Manes [AM75]. Unfortunately, we have in mind monoid homomor-

phisms D : X ! CTS(M;M), that do not correspond to morphisms

D

0

: X �M !M . However, it is possible that replacing \X � �" by a

slightly di�erent endofunctor of CTS would rectify this problem.

13

3.3.1 Product

Suppose A

1

= (M

1

; I

1

;D

1

; O

1

) is an (X

1

; Y

1

)-input/ out-

put automaton and A

2

= (M

2

; I

2

;D

2

; O

2

) is an (X

2

; Y

2

)-

input/output automaton. The product of A

1

and A

2

is de-

�ned to be A

1

�A

2

= (M

1

�M

2

; I

1

� I

2

;D

1

�D

2

; O

1

�O

2

),

which is easily seen to be an (X

1

�X

2

; Y

1

�Y

2

)-input/output

automaton.

3.3.2 Abstraction

Suppose A = (M; I;D;O) is an (X;Y)-input/output au-

tomaton and � : Y ! Y

0

is a morphism. The abstrac-

tion of A by � is the (X;Y

0

)-input/output automaton

� �A = (M; I;D; � �O).

3.3.3 Connection

Suppose A = (M; I;D;O) is an (X � C;Y)-input/output

automaton, and � : Y ! C is a morphism. The connection

of A by � is the (X;Y)-input/output automaton A[�] =

(M

0

; I

0

;D

0

; O

0

), de�ned as follows:

� M

0

has as states the states of M , and as transitions

the transitions of M , however domain and codomain

are de�ned in M

0

so that dom

0

(f) = dom(f) and

cod

0

(f) = D(?

X

; � � O(f))(cod(f)). Each identity

transition id

q

of M is also the identity transition id

0

q

of M

0

. Translation for M

0

is de�ned by the formula

f "

0

g = D(?

X

; � �O(g))(f " g).

� I

0

= I, and O

0

= O.

� D

0

(x)(f) = D(x; � � O(f))(f) for all x 2 X and all

transitions f of M

0

.

Intuitively, the automaton A[�] represents the automa-

ton A with its output \fed back" through � to the C com-

ponent of its input. Thus, each transition f

0

of A[�] is a

transition f of A that has been \composed" with the e�ect

(given by D(?

X

; � �O(f))) of the feedback input � � O(f)

associated with f .

Lemma 1 If A is a (X � C;Y)-Kahn automaton, and

� : Y ! C is a morphism, then A[�] is an (X;Y)-Kahn

automaton.

Proof { Straightforward.

14

3.4 Labeled Processes

A \labeled process" is formed by taking a CTS, designat-

ing an initial state, and assigning a label to each of its

transitions. Labeled processes directly generalize \labeled

transition systems," as used, for example, in [BR83].

Formally, suppose N is a history monoid. An N-labeled

process is a triple P = (M; I;L), where M is a CTS, called

the underlying CTS, I : 1 ! M is a morphism, called the

initial state map, and L : M ! N is a morphism, called

the labeling map.

3.4.1 Product

Suppose P

1

= (M

1

; I

1

; L

1

) is an N

1

-labeled process, and

P

2

= (M

2

; I

2

; L

2

) is an N

2

-labeled process. The product

of P

1

and P

2

is the (N

1

� N

2

)-labeled process P

1

� P

2

=

(M

1

�M

2

; I

1

� I

2

; L

1

� L

2

).

3.4.2 Abstraction

Suppose P = (M; I;L) is an N-labeled process, and � :

N ! N

0

is a morphism. The abstraction of P by � is the

N

0

-labeled process � � P = (M; I; � � L).

3.4.3 Connection

Suppose P = (M; I;L) is an N-labeled process, and �

1

:

N ! C and �

2

: N ! C are morphisms. Let � : M

0

! M

be the equalizer of �

1

�L and �

2

�L. The connection of P by

�

1

= �

2

is the N-labeled process P [�

1

= �

2

] = (M

0

; I

0

; L

0

),

where L

0

= L � �, and I

0

: 1 ! M

0

is the unique map

such that � � I

0

= I, which is determined by the universal

property of � and the fact that �

1

� L � I = �

2

� L � I.

1
M N C

- -

I L

@

@

@

@

@

@R �

�

�

�

�

��6

-

-

M

0

�

1

�

2

I

0

L

0

�

15

4 Input/Output Automata Deter-

mine Labeled Processes

In this section we construct a mapping L that takes

each (X;Y)-input/output automaton A to a corresponding

(X�Y)-labeled process L(A), and we show that this map-

ping preserves the process operations up to isomorphism of

labeled processes. We also obtain a direct characterization

of those (X � Y)-labeled processes that are isomorphic to

the image of an (X;Y)-input/output automaton, and those

isomorphic to the image of an (X;Y)-Kahn automaton. We

call the latter \Kahn processes."

Formally, suppose A = (M; I;D;O) is an (X;Y)-input/

output automaton.

Construct a CTS M

0

as follows:

� Proper States: the proper states of M .

� Proper Transitions: all pairs (x; f), where x 2 X and

f is a proper transition of M . De�ne dom

0

(x; f) =

dom(f) and cod

0

(x; f) = cod(D(x)(f)).

� Identity Transitions: all pairs (?

X

; id

q

).

� Translation: (x; f) and (x

0

; f

0

) are consistent i� x; x

0

and f; f

0

are consistent, in which case (x; f) " (x

0

; f

0

)

is de�ned to be the pair (x " x

0

;D(x

0

)(f " f

0

)).

It is straightforward to use the de�ning properties of D to

verify that M

0

indeed satis�es the axioms for a CTS. The

assumption that D(x) is orthogonal for each x 2 X is used

to satisfy axiom (4) in the de�nition of a CTS.

Let I

0

: 1!M

0

map the unique state { of 1 to the state

I({) ofM

0

. Let L

0

:M

0

! X�Y map each transition (x; f)

of M

0

to the element (x;O(f)) of X � Y .

Then L(A) = (M

0

; I

0

; L

0

) is an (X�Y)-labeled process,

which we call the labeled process determined by A.

Suppose P = (M; I;L) and P

0

= (M

0

; I

0

; L

0

) are N-

labeled processes. An isomorphism from P to P

0

is an iso-

morphism F :M !M

0

of the underlying CTS's, such that

I

0

= F � I and O = O

0

� F . We say that P and P

0

are iso-

morphic, and write P ' P

0

, if there exists an isomorphism

from P to P

0

. If P ' L(A) for some (X;Y)-input/output

automaton A, then we call P an (X;Y)-input/output pro-

cess. If P ' L(A) for some (X;Y)-Kahn automaton A,

then we call P an (X;Y)-Kahn process.

16

Suppose P = (M; I;L) is an (X � Y)-labeled process.

We write L

X

(resp. L

Y

) for the X-component (resp. Y -

component) of L. If P is an (X;Y)-input/output process,

then we say that a transition f of M is a pure output tran-

sition if L

X

(f) = ?

X

.

Theorem 1 An (X � Y)-labeled process P = (M; I;L) is

an (X;Y)-input/output process i� P has the following prop-

erties:

1. For each proper state q of M , and each x 2 X, there

exists a transition x

q

of M , such that dom(x

q

) = q

and L(x

q

) = (x;?

Y

), and such that if f is any tran-

sition of M with dom(f) = q and x v L

X

(f), then

x

q

� f . (We call the transitions x

q

pure input tran-

sitions.)

2. For each proper transition f : q ! r of M and each

x 2 X, we have x

q

" f = (x " L

X

(f))

r

.

3. For each proper transition f : q ! r of M , and each

x 2 X, if x and L

X

(f) are consistent, then x

q

and f

are consistent, and x

q

_ f exists in M .

4. Every proper transition f : q ! r of M , with L

X

(f) =

x, can be written as the join of a pure input and a pure

output transition, viz. f = x

q

_ f

0

.

5. For each proper, pure output transition f of M and

each x 2 X, if f " x

q

is an identity transition, then f

is an identity transition.

Moreover, P is an (X;Y)-Kahn process i� P has the fol-

lowing property in addition to properties (1)-(5):

6. For each coinitial pair f

1

; f

2

of transitions of M , if

L

X

(f

1

) and L

X

(f

2

) are consistent, then f

1

and f

2

are

consistent.

Proof {) Suppose P = (M

P

; I

P

; L

P

) ' L(A) for some

(X;Y)-input/output automaton A = (M; I;D;O). Since

the properties (1)-(6) are preserved under isomorphism, we

may suppose without loss of generality that P = L(A).

Property (1) is satis�ed by taking x

q

= (x; id

q

) for each

x 2 X and each state q ofM

P

. Property (2) is then obvious

from the de�nition of " on M

P

.

To show property (3), recall that each transition f :

q ! r of M

P

is a pair (L

X

P

(f); f

0

), where f

0

is an arrow of

M with dom(f

0

) = q. If x and L

X

P

(f) are consistent, then

17

(L

X

P

(f); f

0

) and x

q

= (x; id

q

) are consistent by de�nition of

translation for M

P

, and x

q

_ f = (x t L

X

P

(f); f

0

).

Property (4) holds because each transition f : q ! r of

M

P

, with L

X

P

(f) = x, is a pair (x; f

0

), hence can be written

f = (x; id

q

) _ (?

X

; f

0

), that is, f = x

q

_ (?

X

; f

0

).

To show property (5), suppose f is a proper, pure out-

put transition of M

P

, and f " x

q

is an identity transi-

tion. Then x

q

= (x; id

q

) and f = (?

X

; f

0

) for some f

0

, so

f " x

q

= (?

X

;D(x)(f

0

)). If (?

X

;D(x)(f

0

)) is an identity

transition, then D(x)(f

0

) is an identity transition, which

implies f

0

is an identity transition by the orthogonality of

D(x). Hence f is an identity transition.

Finally, to show (6), if P is an (X;Y)-Kahn process,

then the CTSM is determinate, which means that any two

coinitial transitions of M are consistent. Thus, if f

1

; f

2

are

transitions of M , with L

X

(f

1

) and L

X

(f

2

) consistent, then

f

1

= (x

1

; f

0

1

) and f

2

= (x

2

; f

0

2

), where x

1

; x

2

are consistent,

and f

0

1

; f

0

2

are coinitial, hence consistent. It follows by de�-

nition of translation for M

P

that f

1

and f

2

are consistent.

(Suppose P has properties (1)-(5). We show how to

construct A = (M; I;D;O) so that P ' L(A), and so that

A is determinate if P has property (6).

It is straightforward to see that the states ofM

P

, equip-

ped with all pure output transitions ofM

P

, form a sub-CTS

M of M

P

. Let I : 1 ! M be de�ned by I({) = I

P

({). Let

O : M ! Y be the restriction of L

Y

P

to M . To de�ne

D, note that if f is a pure output transition of M

P

with

dom(f) = q, then for each x 2 X the transition f " x

q

is also a pure output transition, because O is a morphism.

Thus, for each x 2 X, and each transition f of M with

dom(f) = q, the transition f " x

q

is a transition of M .

De�ne D by D(x)(f) = f " x

dom(f)

.

Note that for all x 2 X and all pure output transitions

f , we have O(D(x)(f)) = O(f " x

dom(f)

) = O(f) " x =

O(f), hence O � D(x) = O. We claim further that D is

a dynamics, hence A = (M; I;D;O) is an input/output

automaton. The orthogonality of D(x) for all x 2 X is

immediate from the de�nition of D and property (5).

We �rst show that for each x 2 X, the map D(x) :

M ! M is a morphism. Since by property (1), L

P

(x

q

) =

(x;?

Y

) 6= >

X�Y

, and thus x

q

6= !

q

, we know that

D(x)(q) =
 implies q =
. Moreover, D(x)(id

q

) = id

q

"

x

q

= id

D(x)(q)

and D(x)(!

q

) = !

q

" x

q

= !

D(x)(q)

. If f; f

0

are coinitial pure output transitions with f

0

: q ! r, then

D(x)(f " f

0

) = (f " f

0

) " x

r

= (f " f

0

) " (x

q

" f

0

), because

x

q

" f

0

= x

r

by property (2). Also, (f " f

0

) " (x

q

" f

0

) =

18

(f " x

q

) " (f

0

" x

q

) = D(x)(f) " D(x)(f

0

).

We next show that D : X ! CTS(M;M) is a monoid

homomorphism. That D(?

X

) = id

M

is clear from the de�-

nition of D and because property (1) implies that (?

X

)

q

=

id

q

holds for all states q. That D(xx

0

)(f) = D(x

0

)(D(x)(f))

follows from the fact that (xx

0

)

q

= x

q

x

0

cod(x

q

)

. This fact,

in turn, holds because x

q

� (xx

0

)

q

by property (1) and

(xx

0

)

q

" x

q

= x

0

cod(x

q

)

by property (2).

We next claim that P ' L(A). Let (M

0

; I

0

; L

0

) = L(A).

Let F :M

0

!M

P

be the morphism that takes each state of

M

0

to the same state ofM

P

, and each transition (x; f) : q !

r of M

0

to the transition x

q

_ f : q ! r of M

P

, which exists

by property (3). This map is clearly a bijection on states.

It is surjective on transitions because by property (4), every

transition f : q ! r of M

P

, with L

X

P

(f) = x, can be written

f = x

q

_ f

0

, where f

0

is a pure output transition. The

morphism F is injective on transitions because for coinitial

pure output transitions f; f

0

of M

P

, with domain q, if f _

x

q

= f

0

_x

q

, then (f_x

q

) " (f

0

_x

q

) is an identity transition.

Since (f _x

q

) " (f

0

_x

q

) = [f " (f

0

_x

q

)]_ [x

q

" (f

0

_x

q

)], it

follows that f " (f

0

_x

q

) is an identity transition. However,

f " (f

0

_ x

q

) = (f " f

0

) " (x

q

" f

0

), and x

q

" f

0

= x

cod(f

0

)

by property (2). Hence f " f

0

is an identity transition by

property (5). Similar reasoning shows that f

0

" f is an

identity transition, thus f = f

0

.

Finally, we claim that A is determinate if P has property

(6). But this is clear, since given coinitial transitions f; f

0

of A, we know that f; f

0

are pure output transitions of M

P

,

hence are consistent if P has property (6).

Theorem 2 The map L has the following properties:

1. Suppose A

1

is an (X

1

; Y

1

)-input/output automaton,

and A

2

is an (X

2

; Y

2

)-input/output automaton. Then

L(A

1

�A

2

) ' L(A

1

)� L(A

2

).

2. Suppose A is an (X;Y)-input/output automaton, and

� : Y ! Y

0

is a morphism. Then L(��A) ' ��L(A).

3. Suppose A is an (X�C;Y)-input/output automaton,

and � : Y ! C is a morphism. Then L(A[�]) '

L(A)[�

C

= �], where �

C

: X�C ! C is the projection

morphism associated with the product X �C.

Proof { We prove only (3), the proofs of (1) and (2) are

straightforward.

(3) Let A = (M; I;D;O) and A[�] = (M

0

; I

0

;D

0

; O

0

).

Let P = L(A) = (M

P

; I

P

; L

P

), and let P

0

= L(A[�]) =

19

(M

P

0

; I

P

0

; L

P

0

). The CTS's M , M

0

, M

P

, and M

P

0

all have

exactly the same states. The transitions from q to r of

M

P

0

are all pairs (x; f), with x 2 X and f a transition of

M

0

, such that q = dom

0

(f) and r = cod

0

(D

0

(x)(f)), and

the transitions from q to r of M

P

are all pairs ((x; c); f),

with (x; c) 2 X � C and f a transition of M , such that

q = dom(f) and r = cod(D(x; c)(f)). But then it is

clear, because dom

0

(f) = dom(f), cod

0

(f) = D(?

X

; � �

O(f))(cod(f)), and D

0

(x)(f) = D(x; � �O(f))(f), that the

map F that takes each state of M

P

0

to the same state

of M

P

and each transition (x; f) of M

P

0

to the transition

((x; � � O(f)); f) of M

P

, is an isomorphism of M

P

0

to the

sub-CTS ofM

P

which has the same states asM

P

, and which

has as transitions all tuples ((x; c); f) with c = � � O(f).

But this sub-CTS of M

P

is exactly the underlying CTS of

L(A)[�

C

= �]. It is easily veri�ed that I

P

= F � I

P

0

and

O

P

0

= O

P

� F , as required for F to be an isomorphism of

labeled processes.

5 Kahn Processes Determine

Kahn Functions

In this section, we construct a mapping K that maps each

(X;Y)-Kahn process to a corresponding (X;Y)-Kahn func-

tion (its \input/output behavior"), and we show that the

process operations are preserved by this mapping.

Lemma 2 Suppose P = (M; I;L) is an (X;Y)-input/out-

put process. Then the following hold:

1. (Decomposability) Every proper transition f : q ! r

of M , with L

X

(f) = x, can be decomposed f = x

q

_f

0

,

where f

0

is a pure output transition.

2. (Receptivity) If f : q ! r is a transition of M

�

, and

x 2 X is such that x and L

X

P

(f) are consistent, then

f and x

q

are consistent.

3. (Factorability) Every transition f : q ! r of M

�

, with

L

X

(f) = x, can be factored into a pure input transi-

tion and a pure output transition, viz.: f = x

q

(f "

x

q

):

Moreover, if P is an (X;Y)-Kahn process, then we have

also:

20

4. (Determinacy) If f; f

0

are coinitial transitions of M

�

such that L

X

(f) and L

X

(f

0

) are consistent, then f

and f

0

are consistent.

Proof { Decomposability is just property 4 of Theorem

1. Receptivity is proved by an induction on f (justi�ed

by Proposition 6), using properties (2) and (3) of Theorem

1. Determinacy is established by a (double) induction on

(f; f

0

), using property (6) of Theorem 1.

Factorability is proved by induction on f . Suppose we

have shown that all proper pre�xes of f : q ! r can be

factored as claimed. If f is an identity, then we can write

f = (?

X

)

q

f . If f is not an identity, then f = gh, where g :

q ! s is a transition of M

�

and h : s! r is a transition of

M . By induction, we can write g = x

0

q

g

0

, where x

0

= L

X

(g)

and g

0

is a pure output transition. Suppose x

0

q

: q ! p

and g

0

: p! s. By property (4) of Theorem 1, we can write

h = x

00

s

_h

0

, where x

00

s

= L

X

(h). By property (2) of Theorem

1, x

00

p

and g

0

are consistent, and x

00

p

" g

0

= x

00

s

. Thus we have

commutativity of the diagram below, showing that we can

factor f as f = gh = (x

0

q

x

00

p

)((g " x

00

p

)(h

0

" x

00

s

)), as required.

�

�

�

��

�

�

�

�� @

@

@

@R

@

@

@

@R

- -

@

@

@

@R �

�

�

��

q

p

t

u

rs

x

0

q

x

00

p

g

0

x

00

s

h

0

" x

00

s

g

h

g

0

" x

00

p

Suppose P is an N-labeled process. Each consistent set

 of transitions of M

�

P

de�nes a consistent set L

P

(
) � N ,

which in turn extends to a least ideal L

P

(
) 2 N . We call

L

P

(
) the history of
. If P is an (X;Y)-input/output pro-

cess, and L

P

(
) = (x; y), then we call x the input history,

and y the output history, of
. The set
 is maximal for

input history x if x is the input history of
, and

0

�

whenever

0

is any consistent set of transitions of M

�

P

with

input history x. It is easy to see that consistent sets that

are maximal for an input history, must be computations.

21

Lemma 3 Suppose P = (M; I;L) is an (X;Y)-input/out-

put process. Then for each x 2 X, and each state q of M ,

there is a q-computation

q

(x) of M that is maximal for

input x. Moreover, if P is a Kahn process, then

q

(x) is

uniquely determined by x and q.

Proof { Apply Zorn's Lemma to fx

0

q

: x

0

v x; x

0

2 Xg.

From Lemma 3 it follows that each (X;Y)-Kahn process

P determines a function K (P) : X ! Y (its input/output

map) that takes each x 2 X to L

Y

P

(

I({)

(x)).

Lemma 4 If P is an (X;Y)-Kahn process, then K (P) is

an (X;Y)-Kahn function.

Proof {

Suppose P = (M; I;L) is an (X;Y)-Kahn process. To

see that K (P) is monotonic, note that if x; x

0

2 X are such

that x v x

0

, then

I({)

(x) �

I({)

(x

0

), and hence K (P)(x) v

K (P)(x

0

).

To see that K (P) is continuous, suppose we are given

a directed collection fx

�

: � 2 Ag of elements of X, with

F

fx

�

: � 2 Ag = x. For each � 2 A, let

�

be the unique

I({)-computation of P that is maximal for input history x

�

,

and let y

�

= K (P)(x

�

) be the output history of

�

. The de-

terminacy of P implies that the collection of computations

� = f

�

: � 2 Ag is directed, hence its union is a computa-

tion
 whose input history is x, and whose output history is

y =

F

fy

�

: � 2 Ag. We claim that
 is in fact maximal for

input history x, thus showing that K (P)(x) = y. If
 were

not maximal, then there would be a transition f of M

�

,

with L

X

P

(f) v x, but with f 62
. But since L

X

(f) is an iso-

lated element of X, it must be the case that L

X

(f) v x

�

for

some � 2 A. By the determinacy of P and the maximality

of

�

, we must have f 2

�

, contradicting the assumption

that f 62
.

The following lemma uses factorability to give a useful

characterization of K (P). A corollary lets us determine

K (L(A)) directly from A.

Lemma 5 Suppose P = (M; I;L) is an (X;Y)-Kahn pro-

cess. Then for all x 2 X,

K (P)(x) =

G

fL

Y

(f

0

) : f

0

in M

�

^ L

X

(f

0

) = ?

X

^ 9x

0

2 X(x

0

v x ^ dom(f

0

) = cod(x

0

I({)

))g:

Proof { Straightforward.

22

Corollary 6 Suppose A = (M; I;D;O) is a determinate

(X;Y)-input/output automaton. Then for all x 2 X,

K (L(A))(x) =

G

fO(f

0

) : f

0

in M

�

^ 9x

0

v x(dom(f

0

) = D(x

0

)(I({)))g:

Theorem 3 Every (X;Y)-Kahn function � is K (P) for

some (X;Y)-Kahn process P .

Proof { Suppose � is an (X;Y)-Kahn function. Let

A

�

= (M; I;D;O) be the determinate (X;Y)-input/output

automaton constructed in Section 3.3. We claim that

K (L(A)) = �. But this follows directly from Corollary

6, since

fO(f

0

) : f

0

in M

�

;9x

0

v x(dom(f

0

) = D(x

0

)(I({)))g

= fy 2 Y : y v �(x)g:

Theorem 4 The map K has the following properties:

1. Suppose P

1

is an (X

1

; Y

1

)-Kahn process and P

2

is an

(X

2

; Y

2

)-Kahn process. Then P

1

� P

2

is an (X

1

�

X

2

; Y

1

�Y

2

)-Kahn process, and K (P

1

�P

2

) = K (P

1

)�

K (P

2

).

2. Suppose P is an (X;Y)-Kahn process, and � : Y ! Y

0

is a morphism. Then ��P is an (X;Y

0

)-Kahn process,

and K (� � P) = � � K (P).

3. (Kahn Principle) Suppose P is an (X � C;Y)-Kahn

process, and � : Y ! C is a morphism. Then P [�

C

=

�] is an (X;Y)-Kahn process, and K (P [�

C

= �]) =

K (P)[�].

We omit the straightforward proofs of (1) and (2). The

proof of (3) uses two lemmas, which we prove �rst. In

what follows, suppose P is an (X�C;Y)-Kahn process, let

� : Y ! C be a morphism, and let P

0

= P [�

C

= �]. Let

� = K (P), and let � : (X ! Y) ! (X ! Y) be de�ned

by �() = � � (id

X

� (� �)). Let �

0

be the identically

?

Y

function, and for each k � 0, let �

k+1

= �(�

k

). Then

K (P)[�] = ��, and the characterization �� =

F

1

k=0

�

k

is

standard.

Lemma 7 For all proper transitions f of M

�

P

0

, with

dom(f) = I

P

0

({), there exists k � 0 such that L

Y

P

0

(f) v

�

k

(L

X

P

0

(f)).

23

Proof { The proof is by induction on f . Suppose we have

established the result for all proper pre�xes of f . If f is an

identity transition, then the result clearly holds with k = 0.

If f is not an identity transition, then we can write

f = gh for some transition g of M

�

P

0

and some transition h

of M

P

0

. Then h is also a transition of M

P

(because M

P

0

is

a sub-CTS of M

P

), so by the decomposability of P , we can

write h = h

in

_ h

out

, where L

P

(gh

in

) = (L

X�C

P

(gh); L

Y

P

(g))

and L

P

(gh

out

) = (L

X�C

P

(g); L

Y

P

(gh)).

Applying the induction hypothesis to the proper pre�x

g of f , we obtain k such that L

Y

P

0

(g) v �

k

(L

X

P

0

(g)). Then

L

Y

P

0

(f) = L

Y

P

(f) = L

Y

P

(gh

out

) v �(L

X�C

P

(gh

out

)) because

� = K (P). Moreover, �(L

X�C

P

(gh

out

)) = �(L

X�C

P

(g)) =

�(L

X

P

0

(g); �(L

Y

P

0

(g))) because L

C

P

(g) = �(L

Y

P

(g)) = �(L

Y

P

0

(g))

by de�nition of M

P

0

. Now, �(L

X

P

0

(g); �(L

Y

P

0

(g))) v

�(L

X

P

0

(g); � � �

k

(L

X

P

0

(g))) = �

k+1

(L

X

P

0

(g)), using the induc-

tion hypothesis, the monotonicity of � and �, and the def-

inition of �

k+1

. Finally, �

k+1

(L

X

P

0

(g)) v �

k+1

(L

X

P

0

(gh)), by

monotonicity of L

P

0

and �

k+1

.

Lemma 8 For all k � 0, and all (x; y) 2 X � Y with

y v �

k

(x), there exists a proper transition f of M

�

P

0

, with

dom(f) = I

P

0

({), such that x = L

X

P

0

(f) and y v L

Y

P

0

(f).

Proof { The proof is by induction on k. If k = 0, then

�

k

(x) = ?

Y

, hence taking f = x

I({)

su�ces for the lemma.

Suppose now that the lemma has been established for

some k � 0, and consider the case for k + 1. Suppose we

are given (x; y) 2 X � Y with y v �

k+1

(x). By de�nition

of �

k+1

, we have y v �(x; � � �

k

(x)). By the continuity

of � and �, there exists y

0

2 Y with y

0

v �

k

(x), such that

y v �(x; �(y

0

)). Applying the induction hypothesis to (x; y

0

)

yields a transition f

0

of M

�

P

0

with x = L

X

P

0

(f

0

) and y

0

v

L

Y

P

0

(f

0

).

Since f

0

is a transition of M

�

P

0

, we know that L

C

P

(f

0

) =

�(L

Y

P

(f

0

)), and hence �(y

0

) v L

C

P

(f

0

). Since � = K (P), the

output history of the unique I

P

({)-computation of M

P

on

input L

X�C

P

(f

0

) must have �(x; �(y

0

)), and hence y, as a

pre�x. Thus, there must exist a transition h of M

�

P

, such

that L

X�C

P

(h) = ?

X�C

and y v L

Y

P

(f

0

h). But then us-

ing receptivity to form h

0

= h _ (�(L

Y

P

(h)))

dom(h)

yields a

transition f = f

0

h

0

of M

�

P

0

with L

X

P

0

(f) = L

X

P

0

(f

0

) = x and

y v L

Y

P

(f

0

h

0

) = L

P

0

(f), as required.

Proof { (of the Kahn Principle, Theorem 4, part (3)) Sup-

pose P = L(A), where A is an (X � C;Y)-Kahn automa-

ton. Then A[�] is an (X;Y)-Kahn automaton by (Lemma

24

1). Since P [�

C

= �] ' L(A[�]) by Theorem 2 (3), it follows

that P [�

C

= �] is an (X;Y)-Kahn process.

To establish the characterization of K (P [�

C

= �]), sup-

pose x 2 X is given. Then K (P [�

C

= �])(x) = y i� y

is the output history of the unique I

P

0

({)-computation of

P

0

which is maximal for input history x. This computa-

tion is precisely the set of all transitions f of M

�

P

0

with

dom(f) = I

P

0

({) and L

X

P

0

(f) v x.

By Lemma 7, to each transition f of M

�

P

0

, with

dom(f) = I

P

0

({), there is a k � 0 such that L

Y

P

0

(f) v

�

k

(L

X

P

0

(f)). This shows that L

Y

P

0

(f) v ��(x) =

K (P)[�](x), and hence K (P

0

)(x) v K (P)[�](x).

To show that K (P)[�](x) v K (P

0

)(x), note that by

Lemma 8, for each k � 0 and (x; y) 2 X � Y , with

y v �

k

(x), there exists a transition f of M

�

P

0

, with

dom(f) = I

P

0

({), such that x = L

X

P

0

(f) and y v L

Y

P

0

(f).

In light of the characterization �� =

F

1

k=0

�

k

, it follows

that the output history of the unique I

P

0

({)-computation of

M

P

0

that is maximal for input x is at least ��(x). Hence

K (P)[�](x) = ��(x) v K (P

0

)(x).

6 Conclusion

The author was led to de�ne concurrent transition systems

because of his frustrated attempts to use ordinary tran-

sition systems to solve the basic problems considered in

this paper: to obtain a simple transition system charac-

terization of the \data
ow-like" processes with functional

behavior, and to show directly from the transition system

de�nition that such processes obey the Kahn Principle. Or-

dinary transition systems seemed not to express enough

about concurrency to permit these results to go through,

whereas with concurrent transition systems things are fairly

smooth. In retrospect, when one considers the fundamental

way in which the notions of join and translation are used

in Theorem 1, it is hard to see how such a characterization

could be expressed without them.

There are tantalizing hints of relationships between con-

current transition systems and well-established models of

concurrency such as Petri Nets [Rei85], event structures

[NPW81,Win84a,Win86], and other related models, such

as the \behavior algebras" of [Win82,Win80]. As yet, we

have only a limited understanding of the connections. A

CTS can be obtained from a \net" [Thi86] by letting the

states be the \cases" of the net and the transitions from q to

25

r be the \independent" sets u of events such that u is a step

enabled in q and such that u leads from q to r. Coinitial

transitions u and v are consistent i� u [v is independent,

in which case u " v is the step unv. Given a CTSM with a

designated initial state q, it is straightforward to make the

set M

�

(q; �) into an event structure (as de�ned in [Win86])

by de�ning the \consistent" sets of arrows to be the �nite

sets that are consistent as we have de�ned in this paper,

and de�ning a consistent set
 � M

�

(q; �) to \enable" an

arrow f i� there is a subset � of
 such that (

W

�)h = f for

some arrow h ofM . Conversely, the set of con�gurations of

an event structure is a partially ordered set in which every

�nite subset with an upper bound has a least upper bound,

and hence is easily made into a complete CTS, by taking

con�gurations as states and the ordering relationships as

transitions. In a sense, concurrent transition systems can

be thought of as a somewhat more primitive operational

model than event structures, since in the former one is free

to designate the set of states, whereas in the latter, states

are always obtained as con�gurations.

The method of comparing semantic models we have used

in this paper is similar to that used in [NPW81], but has

some important di�erences with the more elaborate method

proposed by Winskel [Win84a]. Winskel tries to �nd no-

tions of \process morphism" such that a model becomes a

category in which interesting process operations (such as

parallel composition) become instances of categorical con-

structions (such as product). He compares models by �nd-

ing adjunctions (such as core
ections) between categories.

In contrast, we haven't necessarily tried to make processes

into a category. Although there is an obvious de�nition

of a morphism between labeled processes with the same

labeling monoid, it is not clear that extensions to mor-

phisms between processes with di�erent labeling monoids

are particularly useful. Instead, we have tried to construct

a simple and intuitive operational semantics of concurrency

(the labeled process model) entirely within the category of

concurrent transition systems. We regard a model not as

a category but as merely an algebra, and we attempt to

compare models by constructing homomorphisms between

them.

A number of extensions to the results of this paper nat-

urally suggest themselves as topics for future work. Exten-

sions to the labeled process model to include additional op-

erations such as inverse image, nondeterministic union, and

recursive de�nition, should be straightforward. It would

26

also be interesting to try to characterize the power of the

full input/output process model for representing nondeter-

minate data
ow networks. Although it is possible to rep-

resent \unfair merge" as an input/output automaton, \fair

merge" apparently cannot be so represented. Thus, al-

though the use of CTS's has obviated the need to consider

\arti�cial fairness" arising from in�nite computations cou-

pled with an interleaved model of concurrency, it has not

eliminated the need for information about \true fairness,"

such as that displayed by fair merge. We are currently in-

vestigating natural ways to incorporate such information

into the input/output process model.

References

[AM75] M. A. Arbib and E. G. Manes. Arrows, Struc-

tures, and Functors: The Categorical Imperative.

Academic Press, 1975.

[BA81] J. D. Brock and W. B. Ackerman. Scenarios: a

model of non-determinate computation. In For-

malization of Programming Concepts, pages 252{

259, Springer-Verlag, 1981.

[Bar81] H. P. Barendregt. The Lambda Calculus: Its

Syntax and Semantics. Volume 103 of Studies

in Logic and the Foundations of Mathematics,

North-Holland, 1981.

[BL79] G. Berry and J.-J. L�evy. Minimal and optimal

computations of recursive programs. Journal of

the ACM, 26(1):148{175, January 1979.

[BM82] R. J. Back and N. Mannila. A re�nement of

Kahn's semantics to handle nondeterminism and

communication. In Proc. ACM Symposium on

Distributed Computing, pages 111{120, 1982.

[BR83] S. D. Brookes and W. C. Rounds. Behavioral

equivalence relations induced by programming

logics. In Proceedings of ICALP 83, 1983.

[Bro83] M. Broy. Fixed point theory for communica-

tion and concurrency. In D. Bj�rner, editor,

Formal Description of Programming Concepts II,

pages 125{148, North-Holland, 1983.

27

[Cad72] J. M. Cadiou. Recursive De�nitions of Partial

Functions and Their Computations. PhD thesis,

Stanford University, 1972.

[Eil74] S. Eilenberg. Automata, Languages, and Ma-

chines. Volume A, Academic Press, 1974.

[Fau82] A. A. Faustini. An operational semantics for

pure data
ow. In Automata, Languages, and

Programming, 9th Colloquium, pages 212{224,

Springer-Verlag, 1982.

[Gue81] I. Guessarian. Algebraic Semantics. Volume 99

of Lecture Notes in Computer Science, Springer

Verlag, 1981.

[Hoa78] C. A. R. Hoare. Communicating sequential pro-

cesses. Communications of the ACM, 21(8):666{

676, 1978.

[Kah74] G. Kahn. The semantics of a simple language for

parallel programming. In J. L. Rosenfeld, editor,

Information Processing 74, North-Holland, 1974.

[Kel78] R. M. Keller. Denotational models for parallel

programs with indeterminate operators. In E. J.

Neuhold, editor, Formal Description of Program-

ming Concepts, pages 337{366, North-Holland,

1978.

[KM77] G. Kahn and D. B. MacQueen. Coroutines

and networks of parallel processes. In B.

Gilchrist, editor, Information Processing 77,

North-Holland, 1977.

[Kok86] J. N. Kok. Denotational semantics of nets with

nondeterminism. In ESOP 86, pages 237{249,

Springer-Verlag, March 1986.

[KP84] R. M. Keller and P. Panangaden. Semantics

of networks containing indeterminate operators.

In Seminar on Concurrency, pages 479{496,

Springer-Verlag, 1984.

[Lev78] J.-J. L�evy. R�eductions Correctes et Optimales

dans le Lambda Calcul. PhD thesis, Universit�e

Paris VII, 1978.

[Mac79] D. B. MacQueen. Models for Distributed Com-

puting. Technical Report 351, INRIA, 1979.

28

[MB84] M. G. Main and D. B. Benson. Functional behav-

ior of nondeterministic and concurrent programs.

Information and Control, 62:144{189, 1984.

[Mil80] R. Milner. A Calculus of Communicating Sys-

tems. Volume 92 of Lecture Notes in Computer

Science, Springer Verlag, 1980.

[ML71] S. Mac Lane. Categories for the Working Math-

ematician. Volume 5 of Graduate Texts in Math-

ematics, Springer Verlag, 1971.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri

nets, event structures, and domains, part I. The-

oretical Computer Science, 13:85{108, 1981.

[Par82] D. M. R. Park. The \fairness problem" and non-

deterministic computing networks. In Proceed-

ings, 4th Advanced Course on Theoretical Com-

puter Science, Mathematisch Centrum, 1982.

[Pra82] V. R. Pratt. On the composition of processes. In

Ninth Annual ACM Symposium on Principles of

Programming Languages, 1982.

[Rei85] W. Reisig. Petri Nets. Volume 4 of EATCS

Monographs on Theoretical Computer Science,

Springer, 1985.

[SAM83] M. Steenstrup, M. A. Arbib, and E. G. Manes.

Port automata and the algebra of concurrent pro-

cesses. JCSS, 27(1):29{50, 1983.

[SN85] J. Staples and V. L. Nguyen. A �xpoint seman-

tics for nondeterministic data
ow. Journal of

the ACM, 32(2):411{444, April 1985.

[Sta86] E. W. Stark. The Computation Category of a

Concurrent Transition System. Technical Re-

port 86/08, State University of New York at

Stony Brook Computer Science Dept., May 1986.

Submitted to Theoretical Computer Science.

[Thi86] P. S. Thiagarajan. Elementary net systems. In

Advanced Course on Petri Nets, GMD, Bad Hon-

nef, September 1986.

[Win80] J. Winkowski. Behaviors of concurrent systems.

Theoretical Computer Science, 12:39{60, 1980.

29

[Win82] J. Winkowski. An algebraic description of sys-

tem behaviors. Theoretical Computer Science,

21:315{340, 1982.

[Win84a] G. Winskel. Categories of models for concur-

rency. In Seminar on Concurrency, pages 246{

267, Springer-Verlag, 1984.

[Win84b] G. Winskel. Synchronization trees. Theoretical

Computer Science, 34:33{82, 1984.

[Win86] G. Winskel. Event structures. In Advanced

Course on Petri Nets, GMD, Bad Honnef,

September 1986.

30

