
Composition and Behaviors of Probabilistic

I/O Automata

Sue-Hwey Wu

?

, Scott A. Smolka

?

, Eugene W. Stark

??

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794 USA

???

Abstract. We augment the I/O automaton model of Lynch and Tut-

tle with probability, as a step toward the ultimate goal of obtaining a

useful tool for specifying and reasoning about asynchronous probabilis-

tic systems. Our new model, called probabilistic I/O automata, preserves

the fundamental properties of the I/O automaton model, such as the

asymmetric treatment of input and output and the pleasant notion of

asynchronous composition. For the class of probabilistic I/O automata

without internal actions, we show that probabilistic behavior maps, which

are an abstract representation of I/O automaton behavior in terms of a

certain expectation operator, are compositional and fully abstract with

respect to a natural notion of probabilistic testing.

1 Introduction

I/O automata are a kind of state machine that have been proposed by Lynch

and Tuttle [LT87] as a tool for specifying and reasoning about asynchronous

systems. The distinguishing features of the I/O automaton model are: an asym-

metric treatment of input and output actions, a notion of asynchronous com-

position that takes a \compatible" collection of I/O automata and produces a

new I/O automaton as a result, a simple correspondence between computations

of a composite I/O automaton and certain collections of computations of its

component automata, the treatment of liveness properties through the intro-

duction of a \fairness partition" on the action set of an automaton, and the

use of simulation-based techniques for proving that the set of action sequences

that can be produced by one I/O automaton is a subset of the set of action

sequences that can be produced by another. In this paper, we consider the prob-

lem of augmenting I/O automata with probability information, as a step toward

the ultimate goal of obtaining a useful tool for specifying and reasoning about

asynchronous probabilistic systems. As much as possible, we would like to pre-

serve the characteristic features of the I/O automaton model, especially the

?

Research supported in part by NSF Grants CCR-9120995 and CCR-9208585, and

AFOSR Grant F49620-93-1-0250DEF.

??

Research supported in part by NSF Grant CCR-8902215.

???

E-mail addresses: suewu@cs.sunysb.edu, sas@cs.sunysb.edu,

stark@cs.sunysb.edu

asymmetric treatment of input and output and the associated pleasant notion

of composition.

There are some interesting issues that arise when one attempts to add prob-

ability to I/O automata. These issues derive from the input/output dichotomy

and also from the asynchronous notion of composition for such automata, in

which for any given state of a composite automaton there can be a number of

component automata \competing" with each other to control the execution of

the next action. It is inadequate simply to introduce, for each state q, a single

probability distribution � on the set of all transitions from state q, because intu-

itively there is no good reason why the choice between input transitions (which

are \externally controlled" by the environment of the automaton) and output

or internal transitions (which are \locally controlled" by the automaton itself)

should admit a meaningful probabilistic description independent of any partic-

ular environment. So, instead of one probability distribution for all transitions

for state q, we introduce several probability distributions: one distribution over

all the locally controlled transitions from state q, and separate distributions for

each input action e. Our model is thus a kind of hybrid between the \reactive"

and \generative" approaches described in [vGSST90].

The introduction of multiple probability distributions on transitions still does

not solve all problems, however. Although within a single automaton we do not

wish to ascribe probabilities to choices between externally controlled and lo-

cally controlled transitions, when automata are composed we do wish to have

a natural probabilistic description of the outcome of the competition between

component automata for control of the next action. To this end we introduce the

concept of the delay parameter �(q) associated with each state q. The idea is as

follows: when a component automaton in a composite system arrives in state q,

it draws a random delay time from an exponential distribution with parameter

�(q). This time describes the length of time the automaton will remain in state

q before executing its next locally controlled action. The competition between

several component automata vying for control of the next locally controlled ac-

tion is won by the automaton having the least amount of delay time left. If we

assume that the delay time distributions of component automata are indepen-

dent, we can assign a de�nite probability to the event that any given component

automaton will win the competition in any given system state. The \memo-

ryless" property of the exponential distribution makes it irrelevant whether the

component automata draw one delay time when they �rst enter their local state,

or whether each component draws a new delay time after each global transition.

This last feature makes it possible to give a simple de�nition of composition for

probabilistic I/O automata.

Having obtained de�nitions for probabilistic I/O automata and their com-

position, it becomes interesting to consider their \external behaviors." The ex-

ternal behavior of an ordinary I/O automaton is the set of all sequences of

external actions that can be produced in the various executions of the automa-

ton. Lynch and Tuttle show that the mapping from I/O automata to external

behaviors respects composition, in the sense that the external behavior of a

composite automaton is determined in a natural way by the external behaviors

of the component automata. Since ordinary I/O automata have sets of action

sequences as their external behaviors, one might expect probabilistic I/O au-

tomata to have probability distributions on action sequences as their external

behaviors. Although this intuition can be validated to a certain extent, if one

wishes the mapping from probabilistic I/O automata to external behaviors to

respect composition, then the situation requires a bit more �nesse than simply

using probability distributions on action sequences as external behaviors. The

reason is this: to compute the probability distribution on action sequences de-

termined by a composite automaton, it is necessary to have information about

the internal delays of each of the component automata as well as the probability

distribution they each induce on action sequences.

Our notion of external behavior for probabilistic I/O automata is obtained

as follows: Let A be a probabilistic I/O automaton having no input or internal

actions, and satisfying certain �nite branching conditions. Then the automaton

A induces a probability distribution on the set of all its executions, and, given an

action sequence � = e

0

e

1

. . .e

n�1

, a conditional distribution on the subset X

�

of all executions whose action sequences extend �. We may view the sequences

d

0

d

1

. . .d

n

of delay parameters associated with the states in such an execution as

the values of an (n+1)-dimensional random variable D de�ned on X

�

. We de�ne

E

A

�

to be the mapping that takes each real-valued function g : R

n+1

! R to

its expectation, weighted by the probability of the set X

�

. Actually, the formal

de�nition of E

A

�

given in Section 4 makes sense even if A has a nonempty set of

input actions, though the interpretation as a weighted expectation only applies in

the more restricted situation. We show that a compositional notion of behavior

is obtained, if one takes the external behavior of an automaton A to be the

mapping E

A

that assigns to each action sequence � of length n the associated

functional E

A

�

on R

n+1

!R.

Besides showing that our notion of behavior is compositional, we are also able

to show that it is \fully abstract," in the sense that any two automata having

distinct behaviors can be distinguished by a certain kind of probabilistic test.

The key idea in the proof is that the success probability of tests in a certain class

gives us the expectations of certain rational functions of the delay parameters.

Using the uniqueness of partial fraction expansions of rational functions, we can

recover full information about the functionals E

A

�

from these expectations.

The recent research literature contains a plethora of proposals for proba-

bilistic models. Each of these proposals addresses di�erent issues, and intro-

duces probability in a di�erent way. In reactive processes [Rab63, LS92], for

each state q and action e, a separate probability distribution is associated with

the set of e-labeled transitions leaving state q. In contrast, in generative pro-

cesses [vGSST90], for each state q a single probability distribution is associated

with the set of all transitions leaving state q. The strati�ed processes [vGSST90]

model re�nes the generative model with a multi-level probabilistic choice mech-

anism. Alternating processes [HJ90, Han91] are a mixture of strictly alternating

probabilistic and nondeterministic states. The stochastic processes of [Mol82,

GHR92, Hil93] associate a stochastic delay, represented as a random variable,

with the �ring of transitions. In probabilistic speci�cations [JL91] transitions are

labeled by sets of probabilities, rather than single probabilities. There are a

number of other probabilistic models worth mentioning, but are omitted due to

space limitations.

The main contribution of our work is a compositional semantics for asyn-

chronous probabilistic systems, which is fully abstract with respect to proba-

bilistic testing. To our knowledge, we are the �rst to give such a result. The

closest earlier work is that of Christo� [Chr90], although his approach di�ers

from our own on a number of key aspects: Christo� considers only purely gen-

erative processes, whereas our model models both generative and reactive pro-

cesses. Christo�'s tests are deterministic and there is no notion of success state

or success action; instead, he introduces testing equivalences based on the prob-

abilities induced by the interaction of a process and a test on L

�

, where L is a

set of observable events. In our model, tests are just probabilistic I/O automata

with a distinguished \success action" !, and testing equivalence is de�ned in

terms of the probability of a process successfully passing a test. Christo�'s de-

notational models, which he shows to be fully abstract with respect to testing,

are de�ned in terms of \probability functions" that map (2

L

�;)

�

�L

�

to [0; 1].

No composition operator on processes is de�ned in [Chr90] and thus the issue

of compositionality of his denotational semantics is left untreated. On the other

hand, our model is compositional, and to obtain this result we �nd it necessary

to include information about the probability of internal delays in the abstract

representation of a process.

The rest of this paper is organized as follows: In Section 2, we review some

basic de�nitions and results pertaining to ordinary I/O automata and the com-

position operation on such automata. In Section 3, we de�ne our probabilistic

version of I/O automata, and show how the notion of composition for ordinary

I/O automata extends to the probabilistic case. In Section 4, we de�ne our no-

tion of probabilistic behavior, and we show that the map taking each automaton

to its behavior respects composition. In Section 5, we show that our notion of

behavior is fully abstract with respect to probabilistic testing. Finally, in Sec-

tion 6, we summarize what we have accomplished and outline plans for future

investigation.

2 I/O Automata

In this section, we review some basic de�nitions and results pertaining to ordi-

nary I/O automata. For further details, the reader is referred to [Tut87].

An I/O automaton is a quadruple A = (Q; q

I

; E;�), where

{ Q is a set of states

{ q

I

2 Q is a distinguished start state.

{ E is a set of actions, partitioned into disjoint sets of input, output, and

internal actions, which are denoted by E

in

, E

out

, and E

int

, respectively. The

set E

loc

= E

out

[E

int

of output and internal actions is called the set of

locally controlled actions, and the set E

ext

= E

in

[E

out

is called the set of

external actions.

{ � � Q�E�Q is the transition relation, which satis�es the following input-

enabled property: for any state q 2 Q and input action e 2 E

in

, there exists

a state r 2 Q such that (q; e; r) 2 �.

It will sometimes be convenient for us to use the notation q

e

�!r to assert that

(q; e; r) 2 �.

The original de�nition of I/O automaton [Tut87] included an additional piece

of data: a partition of the set of locally controlled actions. Such partitions are

used to de�ne a notion of fair execution for I/O automata, which is essential if

one wishes to establish liveness properties for such automata. We do not treat

liveness properties in this paper. Even so, to treat liveness in a probabilistic

setting it would seem more natural to bypass fairness altogether, and instead

use probability information to de�ne a notion of \satis�es a liveness property

with probability one." We shall therefore ignore the partition component of I/O

automata in our discussion.

Lynch and Tuttle de�ne a �nite execution fragment of an I/O automaton A

to be an alternating sequence of states and actions of the form

q

0

e

0

�!q

1

e

1

�! . . .

e

n�1

�!q

n

;

such that (q

k

; e

k

; q

k+1

) 2 � for 0 � k < n. In this paper, we �nd it convenient

to use a slightly more liberal de�nition of execution fragment, to allow such

fragments to contain actions not in E. We use the term native to refer to an

execution or execution fragment of A in which only actions from E appear. We

also impose the technical condition that the set E of actions of an I/O automaton

be a subset of a �xed, countable universe of actions U . This is not really much

of a restriction in practice, since in practical situations we have to be able to

explicitly denote all actions by a �nite sequence of symbols. For us, then, a �nite

execution fragment is an alternating sequence of states and actions as above

such that (q

k

; e

k

; q

k+1

) 2 � whenever e

k

2 E and such that q

k+1

= q

k

whenever

e

k

2 U n E. An execution fragment with q

0

= q

I

(the distinguished start state)

is called an execution.

If � denotes an execution fragment as above, then we will use �(k) to denote

the state q

k

, for 0 � k � n. We use the term trace to refer to a sequence of

actions. If � is an execution fragment as above, then the trace of �, denoted

tr(�), is the sequence of actions e

0

e

1

. . . e

n�1

appearing in �.

A collection fA

i

: i 2 Ig of I/O automata, where A

i

= (Q

i

; q

I

i

; E

i

;�

i

), is

called compatible if for all i; j 2 I, E

out

i

\ E

out

j

= ; and E

int

i

\ E

j

= ;. We

de�ne the composition

Q

i2I

A

i

of such a collection to be the I/O automaton

(Q; q

I

; E;�), de�ned as follows:

{ Q =

Q

i2I

Q

i

.

{ q

I

= hq

I

i

: i 2 Ii.

{ E =

S

i2I

E

i

, where E

out

=

S

i2I

E

out

i

; E

int

=

S

i2I

E

int

i

and E

in

=

(

S

i2I

E

in

i

) nE

out

:

{ � is the set of all (hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) such that for all i 2 I, if e 2 E

i

,

then (q

i

; e; r

i

) 2 �

i

, otherwise r

i

= q

i

.

With our more liberal de�nition of execution fragments, we have a simple

correspondence between computations of a composite I/O automaton and the

computations of its component automata. Suppose � is an execution fragment

for a composite automaton

Q

i2I

A

i

, of the form

q

0

e

0

�!q

1

e

1

�! . . .

e

n�1

�!q

n

;

where q

k

= hq

k;i

: i 2 Ii. Then for each i 2 I, the execution fragment � projects

in an obvious way to an execution fragment �jA

i

for A

i

by replacing each state q

k

by its projection q

k;i

. Suppose tr(�) = �, then tr(�jA

i

) = � for each i 2 I. This

mapping, taking each execution fragment � of

Q

i2I

A

i

to indexed collections of

execution fragments h�jA

i

: i 2 Ii, is invertible, in the sense made precise by

the following proposition.

Proposition1. Suppose A =

Q

i2I

A

i

. Then for each action sequence � of the

form e

0

e

1

. . .e

n�1

, the map, that takes each execution fragment � of

Q

i2I

A

i

with tr(�) = � to the collection of execution fragments f�jA

i

: i 2 Ig, is a

bijection, from the set of execution fragments � of A having trace � to the set

of indexed collections f�

i

: i 2 Ig, where each �

i

is an execution fragment of A

i

with trace �.

3 Probabilistic I/O Automata

A probabilistic I/O automaton is a sextuple A = (Q; q

I

; E;�; �; �), where

{ (Q; q

I

; E;�) is an I/O automaton, called the underlying I/O automaton. The

transition relation � is required to satisfy the following properties:

1. The local �nite-branching property:

for all q 2 Q, the set f(q; e; r) 2 � : e 2 E

loc

g is �nite.

2. The input image-�niteness property:

for all q 2 Q and all e 2 E

in

, the set fr 2 Q : (q; e; r) 2 �g is �nite.

{ � : (Q � E � Q) ! [0; 1] is the transition probability function, which is

required to satisfy the following conditions:

1. �(q; e; r) > 0 i� (q; e; r) 2 �.

2.

P

r2Q

�(q; e; r) = 1, for all q 2 Q and all e 2 E

in

.

3. For all q 2 Q, if there exist e 2 E

loc

and r 2 Q such that (q; e; r) 2 �,

then

P

r2Q

P

e2E

loc

�(q; e; r) = 1,

{ � : Q ! [0;1) is the state delay function, which is required to satisfy the

following condition: for all q 2 Q, we have �(q) > 0 if and only if there exist

e 2 E

loc

and r 2 Q such that (q; e; r) 2 �.

The local �nite-branching condition on the transition relation � is imposed

so that in Section 3.1 we can obtain a probability distribution on the set of all

native executions of an automaton A with an empty set of input actions. This

condition is also needed so that we can obtain discrete probability distributions in

key situations in Section 4; thereby avoiding technical problems of measurability

that would arise in a more general setting. Once we have imposed the local �nite-

branching condition, the input image-�niteness condition is required in order

for the class of probabilistic I/O automata to be closed under the composition

operation de�ned in Section 3.2.

The transition probability function � describes the probability, for each state

q, of choosing one transition from state q as opposed to another. As discussed

in the introduction, we do not ascribe any probability to the choice between an

input transition and an output or internal transition, since any such probability

will be determined by the environment. Similarly, the choice between a transition

for one input action and a transition for a di�erent input action is also under

the control of the environment, so we do not attempt to assign probabilities in

this case either. The stochastic conditions (2) and (3) on � re
ect this point of

view: Condition (2) states that for each state q and input action e, the function

� determines a probability distribution on the set of states r such that q

e

�!r.

Condition (3) states that if there is some locally controlled action enabled in

state q, then � determines a probability distribution on the set of all pairs (e; r)

such that e is locally controlled and q

e

�!r.

The state delay function � assigns to each state q a nonnegative real number

�(q). As discussed in the introduction, the intuitive interpretation of �(q) is as

the parameter of an exponential distribution describing the length of a random

\delay period" from the time state q is entered by the automaton until the time

it executes its next locally controlled action. The condition on � corresponds to

the intuition that if no locally controlled action is available in state q, then the

delay period will be in�nite.

Function � can be extended to �nite execution fragments as follows. Let �

be a �nite execution fragment of the form

q

0

e

0

�!q

1

e

1

�! . . .

e

n�1

�!q

n

;

and d

i

denote the value �(q

i

) for 0 � i � n. Then let �(�) denote the sequence

d

0

d

1

. . .d

n

. We call �(�) the delay sequence of �. We use d, d

0

to denote delay

sequences. Let d = d

0

d

1

. . .d

n

and d

0

= d

0

0

d

0

1

. . .d

0

n

be two arbitrary delay se-

quences. Then d + d

0

is the componentwise sum of d and d

0

. This notation is

used extensively in Sections 4 and 5.

One further convention that will be convenient in forming a probability space

from the set of executions of a probabilistic I/O automaton is the following:

if A = (Q; q

I

; E;�; �; �), and e 2 U n E, then we de�ne �(q; e; q) = 1 and

�(q; e; r) = 0 for all other r 2 Q.

3.1 Probability Distributions on Executions and Traces

Suppose A = (Q; q

I

; E;�; �; �) is a probabilistic I/O automaton. In this section,

we consider the problem of assigning probabilities to sets of executions of A. If

A is an arbitrary probabilistic I/O automaton, it does not make much sense to

ask about the probability of sets of executions of A, since we lack any sort of

probabilistic description of when input actions will occur and which ones they

will be. However, in case E

in

= ;, we do not lack any such information, and the

question becomes a meaningful one. We shall likewise restrict our attention to

sets of native executions of A (those that contain only actions in E) since actions

outside E are under the control of the environment.

In any discussion of probability, it is necessary to begin by describing the

probability space. In our case, the set of basic outcomes is the set of all native

executions of A (both �nite and in�nite). If

� = q

0

e

0

�!q

1

e

1

�! . . .

e

n�1

�!q

n

is a �nite native execution, then de�ne the set [�] to be the set of all �nite and

in�nite native executions of the form

� = q

0

e

0

�!q

1

e

1

�! . . .

e

n�1

�!q

n

e

n

�!q

n+1

. . .

In other words, for any �nite native execution �, the set [�] is the set of all �nite

and in�nite native executions � that extend �. De�ne a set of native executions

of A to be basic measurable if it is the union (possibly empty) of a �nite disjoint

collection of sets of the form [�] and sets of the form f�g, where � is a �nite

native execution with [�] 6= f�g. A basic measurable set of the form f�g or of

the form [�] is called simple. For each representation of a basic measurable set,

S

m

i=1

S

i

, where S

i

are disjoint simple measurable sets, we de�ne the rank of this

representation to be the number of S

i

's that are of the form f�g.

Lemma2. The collection of basic measurable sets of executions of A is nonempty,

and is closed under pairwise union, pairwise intersection, and complement. That

is, it forms an algebra of sets.

We now show how to assign probability to basic measurable sets of executions.

Suppose

� = q

0

e

0

�!q

1

e

1

�! . . .

e

n�1

�!q

n

is a �nite native execution. To the set [�] we assign probability as follows:

Pr([�]) =

n�1

Y

k=0

�(q

k

; e

k

; q

k+1

):

In particular Pr([�]) = 1. To the singleton set f�g, where [�] 6= f�g we assign

probability 0.

Lemma3. Suppose S is a simple measurable set and S =

S

m

i=1

S

i

, where S

i

are

disjoint simple measurable sets. Then

Pr(S) =

m

X

i=1

Pr(S

i

):

To extend the above assignment of probability to all basic measurable sets, we

need the following result:

Lemma4. Suppose B =

S

m

i=1

B

i

and B =

S

n

j=1

B

0

j

are two representations of

B as �nite unions of disjoint sets of the form [�] or of the form f�g, where

[�] 6= f�g. Then

m

X

i=1

Pr(B

i

) =

n

X

j=1

Pr(B

0

j

)

To each basic measurable set B =

S

n

i=1

B

i

represented as a a �nite union of

disjoint sets B

i

of the form [�] or of the form f�g, where [�] 6= f�g, we assign

probability as follows:

Pr(B) =

n

X

i=1

Pr(B

i

):

The preceding lemma shows that this de�nition is independent of the particular

choice of representation.

Lemma5. Pr is a measure (a countably additive set function) on the algebra of

basic measurable sets.

Proposition6. Pr extends to a complete measure (which we also denote by Pr)

on a �-algebra containing the algebra of basic measurable sets. Moreover, since

Pr([�]) = 1, it follows that Pr is a probability measure.

We can also assign probabilities to sets of traces. Still working with respect

to a probabilistic I/O automaton A, we de�ne a set V of traces of A to be

measurable if tr

�1

A

(V) is a measurable set of executions of A. To each such set

we assign probability as follows:

Pr(V) = Pr(tr

�1

(V)):

It is easy to check that these de�nitions determine a probability space on the

set of traces.

3.2 Composition

A collection fA

i

: i 2 Ig of probabilistic I/O automata, where

A

i

= (Q

i

; q

I

i

; E

i

;�

i

; �

i

; �

i

);

is called compatible if the corresponding collection of underlying I/O automata

is compatible. The composition

Q

i2I

A

i

of a �nite compatible collection of prob-

abilistic I/O automata is de�ned to be the sextuple (Q; q

I

; E;�; �; �), where

1. Q, q

I

, E, and � are de�ned as for composition of ordinary I/O automata.

2. �(hq

i

: i 2 Ii) =

P

i2I

�

i

(q

i

).

3. If e 2 E

in

, then

�(hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) =

Y

fi2I:e2E

i

g

�

i

(q

i

; e; r

i

):

If e 2 E

loc

k

for some k, then

�(hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) =

�

k

(q

k

)

P

i2I

�

i

(q

i

)

Y

fi2I:e2E

i

g

�

i

(q

i

; e; r

i

):

In this paper, we restrict our attention to the composition of �nite collections

only. The �niteness assumption ensures that the sum in (2) converges, and that

the products appearing in the de�nition of � are nonzero.

The de�nition of composition can be motivated as follows: In any given state

q = hq

i

: i 2 Ii of a composite automaton A =

Q

i2I

A

i

, the component au-

tomata A

i

participate in a race to see which one will be the next to execute

a locally controlled action. Conceptually, when each component automaton A

i

enters its local state q

i

, it chooses a random \delay period" from an exponential

distribution with parameter �

i

(q

i

). It then delays for this amount of time before

executing its next locally controlled action. The winner of the race from state

q will be that component automaton A

i

with the least amount of time to wait.

Because of the \memoryless" property of the exponential distribution, it is not

necessary for us to keep track in the composite automaton of how long each

component automaton A

i

has already delayed in state q

i

|the amount of time

A

i

has left to delay in state q

i

is described by the same exponential distribution

with parameter �

i

(q

i

), regardless of how long A

i

has already delayed. This fact

simpli�es the de�nition of composition considerably, and would also be impor-

tant if we wished to construct a real-world implementation of the probabilistic

behavior modeled by these automata.

Assuming that the random delay periods associated with the component au-

tomata A

i

are independent, the probability that the winner of the race from

state q will be a particular component A

k

will be the probability that the ran-

dom delay period chosen by A

k

is the minimum among all the delay periods

chosen by the A

i

. This probability is the ratio �

k

(q

k

)=

P

i2I

�

i

(q

i

). The distribu-

tion of the time that composite automaton A delays in state q before executing

its next locally controlled action is the distribution of the minimum of the de-

lay times of each of the components. Here the situation is simpli�ed by another

property of the exponential distribution: the distribution of the minimum of a

�nite collection hx

i

: i 2 Ii of independent random variables, where x

i

is ex-

ponentially distributed with parameter �

i

(q

i

), is again exponentially distributed

with parameter

P

i2I

�

i

(q

i

) [Tri82]. This explains the de�nition of �.

The de�nition of � can now be explained as follows: If it has already been de-

termined that the next action to be executed is a particular input action e, then

the probability of choosing a particular transition (q; e; r), where q = hq

i

: i 2 Ii

and r = hr

i

: i 2 Ii is simply the joint probability that component A

i

executes

(q

i

; e; r

i

), for all i 2 I such that e 2 E

i

. Assuming independence, this joint

probability is just the product of the individual probabilities �

i

(q

i

; e; r

i

). On the

other hand, if it has been determined that the next action to be executed is not

an input action, but rather a locally controlled action, then which locally con-

trolled action is actually executed depends on the outcome of the race for control

between the component automata. The probability that the transition executed

will be (q; e; r), where q = hq

i

: i 2 Ii and r = hr

i

: i 2 Ii, and e 2 E

loc

k

is locally

controlled by A

k

, is the joint probability that each A

i

will execute transition

(q

i

; e; r

i

), times the probability that A

k

will win the race. Assuming indepen-

dence, the former is just the product of the individual probabilities �

i

(q

i

; e; r

i

).

As already discussed, the latter probability is the ratio �

k

(q

k

)=

P

i2I

�

i

(q

i

).

Proposition7. If fA

i

: i 2 Ig is a �nite compatible collection of probabilistic

I/O automata, then

Q

i2I

A

i

is also a probabilistic I/O automaton.

4 Behaviors of Probabilistic I/O Automata

In this section and the next section, we consider the restricted class of proba-

bilistic I/O automata A = (Q; q

I

; E;�; �; �) for which the set E

int

of internal

actions is empty. We call probabilistic I/O automata satisfying this condition

restricted probabilistic I/O automata. We wish to associate with such an au-

tomaton a more abstract representation in which we ignore the details of the

particular state set and transition relation of the automaton, and focus instead

on externally observable aspects of its probabilistic behavior.

Suppose A is a restricted probabilistic I/O automaton. Given a trace � =

e

0

e

1

. . . e

n�1

, for each delay sequence d = d

0

d

1

. . .d

n

de�ne the quantity p

A

�

(d)

by:

p

A

�

(d) =

X

�

n�1

Y

k=0

�

A

(�(k); e

k

; �(k + 1));

where the summation is taken over all executions � of A having trace � and delay

sequence d. Observe that convergence of the summation is automatic, since by

the local �nite-branching and input image-�niteness properties of A, the set

f� : tr(�) = �g is �nite. The same reasoning also shows that, for a �xed �, the

set of all d for which p

A

�

(d) is nonzero, is �nite. In case the set of input actions

of A is empty, and � contains only actions in E

A

, the quantity p

A

�

(d) is the

probability of the set of all native executions of A having � as a pre�x of their

trace and d as a pre�x of their delay sequence.

Now, if g : R

n+1

!R is a real-valued function, de�ne

E

A

�

[g(D)] =

X

d

g(d)p

A

�

(d);

where the sum ranges over all (n+ 1)-tuples d = (d

0

; d

1

; . . . ; d

n

) of nonnegative

real numbers. We may view E

A

�

as a functional

E

A

�

: (R

n+1

!R)!R:

In case the set of input actions of A is nonempty, we may regard the sequences

d as the values of an (n+1)-dimensional random variable D = (D

0

; D

1

; . . . ; D

n

)

de�ned on the conditional probability space X

�

of native executions of A whose

traces extend �. In this case, the quantity E

A

�

[g(D)] is just the expectation of

g(D), times the probability p

A

�

of the set X

�

.

Our abstract representation for probabilistic I/O automata assigns, to each

restricted probabilistic I/O automaton A, the mapping E

A

that takes each trace

� 2 U

�

of length n to the functional E

A

�

on R

n+1

! R. We call the mapping

E

A

the probabilistic behavior map associated with A.

The compositionality of the representation of automata by probabilistic be-

havior maps is established in the following result:

Theorem8. Suppose A and B are compatible probabilistic I/O automata and

� = e

0

e

1

. . . e

n�1

. Then

E

AjB

�

[g(D)] = E

B

�

[E

A

�

[g(D

A

+D

B

) � h(D

A

; D

B

)]];

where

h(D

A

; D

B

) =

0

@

Y

k2K

loc

A

D

A

k

D

A

k

+D

B

k

1

A

0

@

Y

k2K

loc

B

D

B

k

D

A

k

+D

B

k

1

A

K

loc

A

= fk : 0 � k < n; e

k

2 E

loc

A

g and K

loc

B

= fk : 0 � k < n; e

k

2 E

loc

B

g

Proof Sketch { Write out the summation that de�nes E

AjB

�

, then use the de�-

nition of �

AjB

to rewrite this expression in terms of �

A

and �

B

. By Proposition 1

and the de�nition of composition for probabilistic I/O automata, the executions

� of AjB with trace � and delay sequence d are in bijective correspondence with

pairs (�

A

; �

B

), where �

A

is an execution of A having � as its trace and d

A

as its

delay sequence, �

B

is an execution of B having � as its trace and d

B

as its delay

sequence, and d = d

A

+ d

B

. Finally, apply the de�nitions of E

A

�

and E

B

�

. ut

5 Testing Equivalence and Full Abstraction

In this section we show that probabilistic behavior maps are fully abstract with

respect to a notion of probabilistic testing equivalence. That is to say, proba-

bilistic I/O automata A and B determine the same probabilistic behavior map

if and only if in a certain sense they cannot be distinguished by any probabilistic

test.

Formally, a test is simply a probabilistic I/O automaton T that has a distin-

guished output action !. We interpret the occurrence of ! in a computation of

T as an indication that the test has succeeded. A test is called closed if its set

of input actions is empty. For closed tests T , it makes sense (see Section 3.1) to

talk about the probability of sets of native executions of T . In Lemma 9 we show

that the set of all successful native executions of a closed test T is measurable,

and we call the probability of this set the success probability of T .

Lemma9. Suppose T is a closed test. Then the set of all successful native exe-

cutions of T is measurable. The probability of this set is given by the formula

X

�2

�

E

T

�!

[1];

where

�

 is the set of all traces that do not contain !.

Suppose A = (Q

A

; q

I

A

; E

A

;�

A

; �

A

; �

A

) is a probabilistic I/O automaton. A

proper test for A is a test T = (Q

T

; q

I

T

; E

T

;�

T

; �

T

; �

T

) such that E

in

T

� E

out

A

,

E

in

A

� E

out

T

n f!g, and E

loc

A

\ E

loc

T

= ;. If T is a proper test for A, then the

collection fA; Tg is compatible. Let AjT denote its composition, then AjT is a

closed test.

If A and B are probabilistic I/O automata with the same set of actions, then

we call A and B testing equivalent if for all proper tests T for A and B, the

success probability of AjT equals the success probability of BjT .

We now de�ne a particular class of tests that will be useful for distinguishing

probabilistic I/O automata. Let a set of actions E = E

0

[E

1

be �xed. For each

trace � = e

0

e

1

. . .e

n�1

with e

k

2 E for 0 � k < n, and for each sequence x =

x

0

; x

1

; . . . ; x

n

of positive real numbers, we de�ne a test T

�;x

= (Q; q

I

; E

T

;�; �; �)

as follows:

{ Q = f0; 1; 2; . . .; n; n+ 1g.

{ q

I

= 0.

{ E

T

= fe

0

; e

1

; . . . ; e

n�1

g [f!; �g, with E

in

T

= E

1

and E

out

T

= E

0

[f!; �g.

{ � is the union of the following sets:

1. f(k; e

k

; k+ 1) : 0 � k < ng

2. f(n; !; n+ 1)g

3. f(k; �; n+ 1) : 0 � k < ng

4. f(k; e; n+ 1) : 0 � k < n; e 2 E

in

T

; e 6= e

k

g

5. f(n; e; n+ 1) : e 2 E

in

T

g.

6. f(n+ 1; e; n+ 1) : e 2 E

in

T

g.

{ � is de�ned as follows:

1. If 0 � k < n, then �(k; e

k

; k+ 1) =

�

1; if e

k

2 E

in

T

1=2 otherwise:

2. �(n; !; n+ 1) = 1:

3. If 0 � k < n, then �(k; �; n+ 1) =

�

1; if e

k

2 E

in

T

1=2 otherwise:

4. If 0 � k < n, e 2 E

in

T

, and e 6= e

k

, then �(k; e; n+ 1) = 1:

5. If e 2 E

in

T

, then �(n; e; n+ 1) = 1; and �(n+ 1; e; n+ 1) = 1:

{ �(k) = x

k

for 0 � k � n and �(n+ 1) = 0.

Intuitively, the test T

�;x

succeeds when it manages to produce the trace

�! by passing successively through states 0; 1; 2; . . . ; n and �nally to n + 1.

For 0 � k � n, the state k has delay parameter x

k

, so the delay sequence �(�)

assocated with a successful execution � of T

�;x

is the sequence x

0

x

1

. . .x

n

0. This

is the only way executions of T

�;x

can succeed; executions that deviate from �

in the initial section cause T

�;x

to enter the state n+ 1 without performing the

success action !. In each state k, where 0 � k < n, the test T

�;x

has a nonzero

chance of failing by performing the action � and going directly to state n + 1.

This gives T

�;x

a certain sensitivity to the delays of its environment.

Lemma10. Suppose A is a probabilistic I/O automaton. Then for each trace

� = e

0

e

1

. . . e

n�1

2 E

�

A

, and for each sequence x = x

0

; x

1

; . . . ; x

n

of positive real

numbers, the test T

�;x

(with E

0

= E

in

A

and E

1

= E

out

A

) is a proper test for A.

Moreover, the success probability of AjT

�;x

is given by:

2

�c

� E

A

�!

[

n

Y

k=0

y

k

x

k

+D

A

k

];

where for all 0 � k < n we have

y

k

=

�

D

A

k

; if e

k

2 E

out

A

x

k

otherwise;

y

n

= x

n

, and c is the number of k 2 f0; 1; . . .; n� 1g for which e

k

2 E

in

A

.

The following lemma is a uniqueness theorem for partial fraction expansions

of rational functions in several variables. It is a key component of the proof of

full abstraction (Theorem 12).

Lemma11. Suppose f and f

0

are two rational functions of variables x

0

; x

1

; . . . ; x

n�1

(n � 0), de�ned as follows:

f =

X

i2I

c

i

Q

n�1

k=0

(x

k

+ d

i;k

)

f

0

=

X

i

0

2I

0

c

0

i

0

Q

n�1

k=0

(x

k

+ d

0

i

0

;k

)

;

where I and I

0

are �nite sets, c

i

2 (0;1) for i 2 I, c

0

i

2 (0;1) for i 2 I

0

, and for

each distinct i; j 2 I the sets f(k; d

i;k

) : 0 � k < ng and f(k; d

j;k

) : 0 � k < ng

are distinct. If f = f

0

, then there exists a bijection (-)

0

: I ! I

0

such that

c

i

= c

0

i

0

and d

i;k

= d

0

i

0

;k

for all i 2 I and 0 � k < n.

Theorem12. Suppose A and B are restricted probabilistic I/O automata with

the same set of actions. Then A and B are testing equivalent if and only if the

associated probabilistic behavior maps E

A

and E

B

are equal.

Proof Sketch { If E

A

= E

B

, then the fact that A and B are testing equivalent

follows directly from Theorem 8 and Lemma 9.

Conversely, suppose A and B are testing equivalent. For each trace � 2 U

�

of length n that contains no occurrences of the special action !, in Lemma

10 we show that the tests T

�;x

are proper tests for A and B and the success

probability of AjT

�;x

is given by an expression E

A

�!

[g(D;x)], where g is a certain

rational function of the n + 1 random variables D and the n + 1 unknowns x.

The expression E

A

�!

[g(D;x)] is thus a rational function of x alone. The success

probability of BjT

�;x

is given by a similar rational function. Since A and B are

testing equivalent, these two rational functions must have the same values for

all positive x, hence they are the same rational function. Using Lemma 11, we

show that the quantities p

A

�!

(d) and p

B

�!

(d), used in the de�nitions of E

A

�

and

E

B

�

, can be recovered uniquely from these rational functions, thus showing that

E

A

�

= E

B

�

for all traces � that do not contain !. A �nal step in the proof removes

the restriction on �, thus showing that E

A

= E

B

. ut

6 Summary and Conclusion

In this paper, we have presented a framework in which probability can be added

to I/O automata. To capture the asymmetric treatment of input and output

indigenous to I/O automata, a separate distribution is associated with each in-

put action, in the reactive style, and a single distribution is associated with all

locally controlled actions, in the generative style. No relative probabilities are

de�ned among di�erent input actions nor between input and locally controlled

actions. Moreover, the pleasant notion of I/O automaton asynchronous compo-

sition is retained, in part, through the introduction of state delay parameters.

Delay parameters admit a natural probabilistic description of the outcome of

the competition between automata vying for control of the next action.

As is the practice with ordinary I/O automata, we introduced a more abstract

representation of the external behaviors of probabilistic I/O automata (without

internal actions), probabilistic behavior maps. This representation maps �nite

action sequences to a set of expectation functionals which give information not

only about the probabilities of action sequences but also delay sequences. This

latter information is essential for achieving compositionality. We also showed

that probabilistic behavior maps are fully abstract with respect to a natural

notion of probabilistic testing.

As future work, we plan to generalize probabilistic behavior maps to proba-

bilistic I/O automata with internal actions. Additionally, we would like to extend

the entire setup to handle time as well as probability. The presence of the state

delay function in our model provides a convenient mechanism on which to base

this work.

References

[Chr90] I. Christo�. Testing equivalences and fully abstract models for probabilistic

processes. In J. C. M. Baeten and J. W. Klop, editors, Proceedings of CON-

CUR '90 { First International Conference on Concurrency Theory, Lecture

Notes in Computer Science, Volume 458, pages 126{140. Springer-Verlag,

1990.

[GHR92] N. G�otz, U. Herzog, and M. Rettlebach. TIPP | a language for timed

processes and performance evaluation. Technical Report 4/92, University

of Erlangen-N�urnberg, Germany, November 1992.

[Han91] H. A. Hansson. Time and Probability in Formal Design of Distributed Sys-

tems. PhD thesis, Department of Computer Systems, Uppsala University,

1991.

[Hil93] J. Hillston. PEPA: Performance enhanced process algebra. Technical Re-

port CSR-24-93, Department of Computer Science, University of Edin-

burgh, Edinburgh, Great Britain, March 1993.

[HJ90] H. A. Hansson and B. Jonsson. A calculus for communicating systems with

time and probabilities. In Proceedings of the 11th IEEE Symposium on

Real-Time Systems, 1990.

[JL91] B. Jonsson and K. G. Larsen. Speci�cation and re�nement of probabilistic

processes. In Proceedings of the 6th IEEE Symposium on Logic in Computer

Science, Amsterdam, July 1991.

[LS92] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. In-

formation and Computation, 94(1):1{28, September 1992. Preliminary ver-

sions of this paper appeared as University of Aalborg technical reports

R 88-18 and R 88-29, and in Proceedings of the 16th Annual ACM Sympo-

sium on Principles of Programming Languages, Austin, Texas, 1989.

[LT87] N. A. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed

algorithms. In Proceedings of the 6th Annual ACM Symposium on Princi-

ples of Distributed Computing, 1987.

[Mol82] M. K. Molloy. Performance analysis using stochastic Petri nets. IEEE

Trans. Comput., C-31(9), September 1982.

[Rab63] M. O. Rabin. Probabilistic automata. Information and Control, 6:230{245,

1963.

[Tri82] K. S. Trivedi. Probability & Statistics with Reliability, Queuing, and Com-

puter Science Applications. Prentice Hall, Englewood Cli�s, New Jersey,

1982.

[Tut87] M. Tuttle. Hierarchical correctness proofs for distributed algorithms. Mas-

ter's thesis, MIT, April 1987.

[vGSST90] R. J. van Glabbeek, S. A. Smolka, B. Ste�en, and C. M. N. Tofts. Reac-

tive, generative, and strati�ed models of probabilistic processes. In Pro-

ceedings of the 5th IEEE Symposium on Logic in Computer Science, pages

130{141, Philadelphia, PA, 1990.

This article was processed using the LT

E

X macro package with LLNCS style

