
Composition and Behaviors of

Probabilistic I/O Automata

�

Sue-Hwey Wu, Scott A. Smolka, Eugene W. Stark

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794 USA

Abstract

We augment the I/O automaton model of Lynch and Tuttle with probability, as a

step toward the ultimate goal of obtaining a useful tool for specifying and reasoning

about asynchronous probabilistic systems. Our new model, called probabilistic I/O

automata, preserves the fundamental properties of the I/O automaton model, such

as the asymmetric treatment of input and output and the pleasant notion of asyn-

chronous composition. For certain classes of probabilistic I/O automata, we show

that probabilistic behavior maps, which are an abstract representation of I/O au-

tomaton behavior in terms of a certain expectation operator, are compositional and

fully abstract with respect to a natural notion of probabilistic testing.

1 Introduction

I/O Automata are a kind of state machine that have been proposed by Lynch and Tuttle

[LT87] as a tool for specifying and reasoning about asynchronous systems. The distin-

guishing features of the I/O automaton model are: (1) an asymmetric treatment of input

and output actions, (2) a notion of asynchronous composition that takes a \compatible"

collection of I/O automata and produces a new I/O automaton as a result, (3) a simple

correspondence between computations of a composite I/O automaton and certain collec-

tions of computations of its component automata, (4) the treatment of liveness properties

through the introduction of a \fairness partition" on the action set of an automaton, and

(5) the use of simulation-based techniques for proving that the set of action sequences that

�

A preliminary version of this paper appeared in the Proceedings of CONCUR'94 { Fifth International

Conference on Concurrence Theory, Lecture Notes in Computer Science, volume 836. The research of

the �rst and second authors was supported in part by NSF Grants CCR-9120995 and CCR-9208585, and

AFOSR Grant F49620-93-1-0250. The research of the third author was supported in part by NSF Grant

CCR-8902215. E-mail addresses: suewu@cs.sunysb.edu, sas@cs.sunysb.edu, stark@cs.sunysb.edu

can be produced by one I/O automaton is a subset of the set of action sequences that

can be produced by another. In this paper, we consider the problem of augmenting I/O

automata with probability information, as a step toward the ultimate goal of obtaining

a useful tool for specifying and reasoning about asynchronous probabilistic systems. As

much as possible, we would like to preserve the characteristic features of the I/O automa-

ton model, especially the asymmetric treatment of input and output and the associated

pleasant notion of composition.

There are some interesting issues that arise when one attempts to add probability to

I/O automata. These issues derive from the input/output dichotomy and also from the

asynchronous notion of composition for such automata, in which for any given state of a

composite automaton there can be a number of component automata \competing" with

each other to control the execution of the next action. It is inadequate simply to introduce,

for each state q, a single probability distribution � on the set of all transitions from state

q, because intuitively there is no good reason why the choice between input transitions

(which are \externally controlled" by the environment of the automaton) and output or

internal transitions (which are \locally controlled" by the automaton itself) should admit

a meaningful probabilistic description independent of any particular environment. So,

instead of one probability distribution for all transitions for state q, we introduce several

probability distributions: one distribution over all the locally controlled transitions from

state q, and separate distributions for each input action e. Our model is thus a kind of

hybrid between the \reactive" and \generative" approaches described in [vGSST90].

The introduction of multiple probability distributions on transitions still does not solve

all problems, however. Although within a single automaton we do not wish to ascribe

probabilities to choices between externally controlled and locally controlled transitions,

when automata are composed we do wish to have a natural probabilistic description of the

outcome of the competition between component automata for control of the next action.

To this end we introduce the concept of the delay parameter �(q) associated with each state

q. The idea is as follows: when a component automaton in a composite system arrives in

state q, it draws a random delay time from an exponential distribution with parameter

�(q). This time describes the length of time the automaton will remain in state q before

executing its next locally controlled action. The competition between several component

automata vying for control of the next locally controlled action is won by the automaton

having the least amount of delay time left. If we assume that the delay time distributions

of component automata are independent, we can assign a de�nite probability to the event

that any given component automaton will win the competition in any given system state.

The \memoryless" property of the exponential distribution makes it irrelevant whether

the component automata draw one delay time when they �rst enter their local state, or

whether each component draws a new delay time after each global transition. This last

feature makes it possible to give a simple de�nition of composition for probabilistic I/O

automata.

Having obtained de�nitions for probabilistic I/O automata and their composition, it

becomes interesting to consider their \external behaviors." The external behavior of an

2

ordinary I/O automaton is the set of all sequences of external actions that can be produced

in the various executions of the automaton. Lynch and Tuttle show that the mapping from

I/O automata to external behaviors respects composition, in that the external behavior

of a composite automaton is determined in a natural way by the external behaviors of

the component automata. Since ordinary I/O automata have sets of action sequences as

their external behaviors, one might expect probabilistic I/O automata to have probability

distributions on action sequences as their external behaviors. Although this intuition can

be validated to a certain extent, if one wishes the mapping from probabilistic I/O automata

to external behaviors to respect composition, then the situation requires a bit more �nesse

than simply using probability distributions on action sequences as external behaviors. The

reason is this: to compute the probability distribution on action sequences determined by

a composite automaton, it is necessary to have information about the internal delays of

each of the component automata as well as the probability distribution they each induce

on action sequences.

Our notion of external behavior for probabilistic I/O automata is obtained as follows:

Let A be a probabilistic I/O automaton having no input or internal actions, and satisfying

certain �nite branching conditions. Then the automaton A induces a probability distri-

bution on the set of all its executions, and, given an action sequence � = e

0

e

1

: : : e

n�1

, a

conditional distribution on the subset X

�

of all executions whose action sequences extend

�. We may view the sequences d

0

d

1

: : : d

n

of delay parameters associated with the �rst

(n+1) states in such an execution as the values of an (n+1)-dimensional random variable

D de�ned on X

�

. We de�ne E

A

�

to be the mapping that takes each real-valued function

g : R

n+1

! R to its expectation, weighted by the probability of the set X

�

. Since the

formal summation formula that de�nes E

A

�

makes sense even when A is allowed to have

input actions, we can use the same formula to associate a functional E

A

�

with an arbitrary

probabilistic I/O automaton A. We show that, for probabilistic I/O automata with no

internal actions, a compositional notion of behavior is obtained if one takes the external

behavior of an automaton A to be the mapping E

A

that assigns to each action sequence �

of length n the associated functional E

A

�

on R

n+1

!R.

Besides showing that our notion of behavior is compositional, we are also able to show

that it is \fully abstract," in the sense that any two automata having distinct behaviors can

be distinguished by a certain kind of probabilistic test. The key idea in the proof is that the

success probability of tests in a certain class gives us the expectations of certain rational

functions of the delay parameters. Using the uniqueness of partial fraction expansions of

rational functions [Lan90], we can recover full information about the functionals E

A

�

from

these expectations.

Finally, we extend the de�nition of E

A

�

to a class of probabilistic I/O automata with

internal actions and again show that it is compositional and fully abstract with respect to

probabilistic testing.

3

Related Work

The recent research literature contains a plethora of proposals for probabilistic models.

Each of these proposals addresses di�erent issues, and introduces probability in a di�er-

ent way. In reactive processes [Rab63, LS92], for each state q and action e, a separate

probability distribution is associated with the set of e-labeled transitions leaving state

q. In contrast, in generative processes [vGSST90], for each state q a single probability

distribution is associated with the set of all transitions leaving state q. The strati�ed pro-

cesses [vGSST90] model re�nes the generative model with a multi-level probabilistic choice

mechanism. Alternating processes [HJ90, Han91] are a mixture of strictly alternating prob-

abilistic and nondeterministic states. The stochastic processes of [Mol82, GHR92, Hil93]

associate a stochastic delay, represented as a random variable, with the �ring of transitions.

In probabilistic speci�cations [JL91] transitions are labeled by sets of probabilities, rather

than single probabilities. Finally, the model of probabilistic communicating processes [Sei92]

contains both an external (non-deterministic) and internal (probabilistic) choice operator,

and processes are de�ned as conditional probability measures.

The main contribution of our work is a compositional semantics for asynchronous prob-

abilistic systems, which is fully abstract with respect to probabilistic testing. To our

knowledge, we are the �rst to give such a result. The closest earlier work is that of

Christo� [Chr90], although his approach di�ers from our own on a number of key aspects:

Christo� considers only purely generative processes, whereas our model captures processes

that are both generative and reactive. Christo�'s tests are deterministic and there is no

notion of success state or success action; instead, he introduces testing equivalences based

on the probabilities induced by the interaction of a process and a test on L

�

, where L is a

set of observable events. In our model, tests are just probabilistic I/O automata with a dis-

tinguished \success action" !, and testing equivalence is de�ned in terms of the probability

of a process successfully passing a test. Christo�'s denotational models, which he shows

to be fully abstract with respect to testing, are de�ned in terms of \probability functions"

that map (2

L

�;)

�

�L

�

to [0; 1]. No composition operator on processes is de�ned in [Chr90]

and thus the issue of compositionality of his denotational semantics is left untreated. On

the other hand, our model is compositional, and to obtain this result we �nd it necessary

to include information about internal delays in the abstract representation of a process.

In [HJ90, Han91], Hansson and Jonsson present a process algebra, Timed Probabilis-

tic Calculus of Communicating Systems (TPCCS), which extends Milner's CCS [Mil89]

with probabilities and time. Discrete time is used in TPCCS, and a timeout operator is

introduced. The probabilistic extension is achieved through a probabilistic choice opera-

tor, which de�nes a probability distribution over a set of reachable successor states. For

each state in this model, either a probabilistic choice (determined by the process only)

or a nondeterministic choice (which can be a�ected by the environment) is made. For

technical reasons, a strict alternation between probabilistic and nondeterministic choices

is required. The motivation of the separation of probabilistic and nondeterministic tran-

sitions is to avoid making assumptions about the scheduling of processes and about the

relative probabilities of internal actions versus external communications when composing

4

processes. In our model, a natural notion of composition is achieved by introducing state

delay parameters and di�erent probability functions for each input action and the set of

locally controlled actions. Hansson and Jonsson also equip TPCCS with a notion of strong

bisimulation equivalence, for which they give a sound and complete axiomatization, while

in our model, we de�ne a testing equivalence based on probabilistic testing.

In [LS92], Larsen and Skou introduce probabilistic bisimulation, using reactive prob-

abilistic transition systems as the underlying semantic model. They present a notion of

testing and show that if two processes are probabilistically bisimilar then no test can dis-

tinguish them. In addition to the di�erence in underlying models, their notion of test is

very di�erent from ours. They consider a test as an algorithm describing the procedure

of running experiments on a process and present a simple but powerful language for tests.

Another language is introduced for writing down the possible observations during the ex-

ecution of a test on a process. Each process can be viewed as de�ning a probabilistic

distribution over the observations for a given test. They also introduce a new modal logic,

Probabilistic Modal Logic (PML), and show that two processes are indistinguishable under

PML if they give the same probability distribution on the observation set of any test (i.e.

they are probabilistically bisimilar.)

Cleaveland et al. [CSZ92] present a testing preorder for probabilistic processes based on

the notion of a process passing a test with a certain probability. They also exhibit strong

links to the traditional testing theory of DeNicola and Hennessy [dNH83, Hen88]. Their

work is similar to our own in its concept of testing and the homogeneity among processes

and tests. However, there are a number of key di�erences: Processes in [CSZ92] are purely

generative and there is no composition operator de�ned on processes. Thus the notion of

an \interaction system" for a process and a test has to be de�ned explicitly. In followup

work, Yuen et al. [YCDS94] present fully abstract characterizations of the testing preorders

proposed in [CSZ92]. Since they are working in a generative model, probabilities in inter-

action systems must be normalized, and this leads to a more complicated characterization

of the testing preorders.

Segala and Lynch [SL94] de�ne several probabilistic simulation relations for proba-

bilistic systems in a \probabilistic automaton model". Instead of associating probability

distributions with transitions as in our model, the transition relation of a probabilistic

automaton is a set of pairs (s; (
;F ; P)), where s is a state and (
;F ; P) is a discrete

probability distribution over (action, state) pairs and a symbol �, representing deadlock.

The model distinguishes between probabilistic choices and nondeterministic choices, which

in some sense is similar to our modeling of generative outputs and reactive inputs. The

nondeterministic choices are resolved by \adversaries" that schedule the next step of a

probabilistic automaton A based on the steps A has previously performed. The simula-

tion relations are evaluated according to two criteria: compositionality and preservation

of properties expressible in PCTL, an untimed version of Hansson's Timed Probabilistic

concurrent Computation Tree Logic (TPCTL) [Han91].

The rest of this paper is organized as follows: In Section 2, we review some basic de�ni-

tions and results pertaining to ordinary I/O automata and their composition. In Section 3,

5

we de�ne our probabilistic version of I/O automata, and show how the notion of composi-

tion for ordinary I/O automata extends to the probabilistic case. In Section 4, we de�ne

our notion of probabilistic behavior, and we show that the map taking each automaton

to its behavior respects composition. In Section 5, we show that our notion of behavior

is fully abstract with respect to probabilistic testing. In Section 6, we extend the notion

of probabilistic behavior maps to a restricted class of probabilistic I/O automata with in-

ternal actions, and we show that this map also respects composition and full abstraction.

Finally, in Section 7, we summarize what we have accomplished and outline plans for future

investigation.

2 I/O Automata

In this section, we review some basic de�nitions and results pertaining to ordinary I/O

automata. For further details, the reader is referred to [Tut87].

An I/O automaton is a quadruple A = (Q; q

I

; E;�), where

� Q is a set of states.

� q

I

2 Q is a distinguished start state.

� E is a set of actions, partitioned into disjoint sets of input, output, and internal

actions, which are denoted by E

in

, E

out

, and E

int

, respectively. The set E

loc

=

E

out

[E

int

of output and internal actions is called the set of locally controlled actions,

and the set E

ext

= E

in

[E

out

is called the set of external actions.

� � � Q�E�Q is the transition relation, which satis�es the following input-enabledness

property: for any state q 2 Q and input action e 2 E

in

, there exists a state r 2 Q

such that (q; e; r) 2 �.

It will sometimes be convenient for us to use the notation q

e

�!r to assert that (q; e; r) 2 �.

The original de�nition of I/O automaton [Tut87] allowed several start states instead of

just one distinguished start state. It also included an additional piece of data: a partition

of the set of locally controlled actions. Such partitions are used to de�ne a notion of fair

execution for I/O automata, which is essential if one wishes to establish liveness properties

for such automata. We do not treat liveness properties in this paper. However, we expect

that in many cases, liveness can be treated in a probabilistic setting by dispensing with

fairness and instead using probability information to de�ne a notion of \satis�es a liveness

property with probability one." We shall therefore ignore the partition component of I/O

automata in our discussion.

Lynch and Tuttle de�ne a �nite execution fragment of an I/O automaton A to be an

alternating sequence of states and actions of the form

q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

;

6

such that (q

k

; e

k

; q

k+1

) 2 � for 0 � k < n. In this paper, we �nd it convenient to use a

slightly more liberal de�nition of execution fragment, to allow such fragments to contain

actions not in E. To accommodate this, we assume the existence of a �xed, countable

universe of actions U , and we require that the set E of actions of an I/O automaton be a

subset of U . This is not really much of a restriction in practice, since in practical situations

we have to be able to explicitly denote all actions by a �nite sequence of symbols. We also

need to be able to distinguish external actions from internal actions, and so we also assume

that U is partitioned into disjoint sets U

ext

and U

int

, and we require that the partitioning of

the set E of actions of an I/O automaton satisfy the condition E

ext

� U

ext

and E

int

� U

int

.

For us, then, a �nite execution fragment is an alternating sequence of states and actions

as above such that (q

k

; e

k

; q

k+1

) 2 � whenever e

k

2 E and such that q

k+1

= q

k

whenever

e

k

2 U nE. An execution fragment with q

0

= q

I

(the distinguished start state) is called an

execution. We use the term native to refer to an execution or execution fragment of A in

which only actions from E appear.

If � denotes an execution fragment as above, then we will use �(k) to denote the state

q

k

, for 0 � k � n. We use the term trace to refer to a sequence of actions. If � is an

execution fragment as above, then the trace of �, denoted tr(�), is the sequence of actions

e

0

e

1

: : : e

n�1

appearing in �.

2.1 Composition

A collection fA

i

: i 2 Ig of I/O automata, where A

i

= (Q

i

; q

I

i

; E

i

;�

i

), is called compatible if

for all i; j 2 I, i 6= j, we have E

out

i

\E

out

j

= ; and E

int

i

\E

j

= ;. We de�ne the composition

Q

i2I

A

i

of such a collection to be the I/O automaton (Q; q

I

; E;�), de�ned as follows:

� Q =

Q

i2I

Q

i

.

� q

I

= hq

I

i

: i 2 Ii.

� E =

S

i2I

E

i

, where

E

out

=

[

i2I

E

out

i

E

int

=

[

i2I

E

int

i

E

in

= (

[

i2I

E

in

i

) n E

out

:

� � is the set of all (hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) such that for all i 2 I, if e 2 E

i

, then

(q

i

; e; r

i

) 2 �

i

, otherwise r

i

= q

i

.

With our more liberal de�nition of execution fragments, we have a simple correspon-

dence between computations of a composite I/O automaton and the computations of its

component automata. Suppose � is an execution fragment for a composite automaton

Q

i2I

A

i

, of the form

q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

;

where q

k

= hq

k;i

: i 2 Ii. Then for each i 2 I, the execution fragment � projects in

an obvious way to an execution fragment �jA

i

of A

i

by replacing each state q

k

by its

7

projection q

k;i

. Suppose tr(�) = �, then tr(�jA

i

) = � for each i 2 I. This mapping,

taking each execution fragment � of

Q

i2I

A

i

to indexed collections of execution fragments

h�jA

i

: i 2 Ii, is invertible, in the sense made precise by the following proposition.

Proposition 2.1 Suppose A =

Q

i2I

A

i

. Then for each action sequence � of the form

e

0

e

1

: : : e

n�1

, the map, that takes each execution fragment � of

Q

i2I

A

i

with tr(�) = � to

the collection of execution fragments f�jA

i

: i 2 Ig, is a bijection, from the set of execution

fragments � of A having trace � to the set of indexed collections f�

i

: i 2 Ig, where each �

i

is an execution fragment of A

i

with trace �.

Proof { Suppose � = q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

is an execution fragment of A. Then �jA

i

=

q

0;i

e

0

�!q

1;i

e

1

�! : : :

e

n�1

�!q

n;i

is an execution fragment of A

i

since by the de�nition of composi-

tion, (q

k;i

; e

k

; q

k+1;i

) 2 �

i

if e

k

2 E

i

and q

k+1;i

= q

k;i

if e

k

62 E

i

.

Conversely, suppose �

i

= q

0;i

e

0

�!q

1;i

e

1

�! : : :

e

n�1

�!q

n;i

is an execution fragment of A

i

, for all

i 2 I. Then � = q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

is an execution fragment of A, since by the de�nition

of composition, (q

k

; e

k

; q

k+1

) 2 � if e

k

2 E

i

for some i 2 I, and

q

k+1

= hq

k+1;i

: i 2 Ii = hq

k;i

: i 2 Ii = q

k

if e

k

62 E

i

for all i 2 I; i.e. e

k

62 E.

Besides composition, Lynch and Tuttle also de�ned \action hiding" on I/O automata

[Tut87]. We do not treat action hiding in this paper.

3 Probabilistic I/O Automata

A probabilistic I/O automaton is a sextuple A = (Q; q

I

; E;�; �; �), where

� (Q; q

I

; E;�) is an I/O automaton, called the underlying I/O automaton. The transi-

tion relation � is required to satisfy the following properties:

1. The local �nite-branching property: for all q 2 Q, the set

f(q; e; r) 2 � : e 2 E

loc

g

is �nite.

2. The input image-�niteness property: for all q 2 Q and all e 2 E

in

, the set

fr 2 Q : (q; e; r) 2 �g

is �nite.

� � : (Q � E � Q) ! [0; 1] is the transition probability function, which is required to

satisfy the following conditions:

8

1. �(q; e; r) > 0 i� (q; e; r) 2 �.

2.

P

r2Q

�(q; e; r) = 1, for all q 2 Q and all e 2 E

in

.

3. For all q 2 Q, if there exist e 2 E

loc

and r 2 Q such that (q; e; r) 2 �, then

P

r2Q

P

e2E

loc

�(q; e; r) = 1,

� � : Q ! [0;1) is the state delay function, which is required to satisfy the following

condition: for all q 2 Q, we have �(q) > 0 if and only if there exist e 2 E

loc

and

r 2 Q such that (q; e; r) 2 �.

The local �nite-branching condition on the transition relation � is imposed so that in

Section 3.1 we can obtain a probability distribution on the set of all native executions of an

automaton A with an empty set of input actions. This condition is also needed so that we

can obtain discrete probability distributions in key situations in Section 4; thereby avoiding

technical problems of measurability that would arise in a more general setting. Once we

have imposed the local �nite-branching condition, the input image-�niteness condition

is required in order for the class of probabilistic I/O automata to be closed under the

composition operation de�ned in Section 3.2. Though it might be possible to relax the

�niteness to countability (or beyond) in these conditions, this is a purely measure-theoretic

problem that would present no new computational issues, and so we do not attempt to

solve it in this paper.

The transition probability function � describes the probability, for each state q, of

choosing one transition from state q as opposed to another. As discussed in the introduction,

we do not ascribe any probability to the choice between an input transition and an output

or internal transition, since any such probability will be determined by the environment.

Similarly, the choice between a transition for one input action and a transition for a di�erent

input action is also under the control of the environment, so we do not attempt to assign

probabilities in this case either. The stochastic conditions (2) and (3) on � re
ect this

point of view: Condition (2) states that for each state q and input action e, the function �

determines a probability distribution on the set of states r such that q

e

�!r. Condition (3)

states that if there is some locally controlled action enabled in state q, then � determines

a probability distribution on the set of all pairs (e; r) such that e is locally controlled and

q

e

�!r.

The state delay function � assigns to each state q a nonnegative real number �(q). As

discussed in the introduction, the intuitive interpretation of �(q) is as the parameter of an

exponential distribution describing the length of a random \delay period" from the time

state q is entered by the automaton until the time it executes its next locally controlled

action. The condition on � corresponds to the intuition that if no locally controlled action

is available in state q, then the delay period will be in�nite.

Function � can be extended to �nite execution fragments as follows. Let � be a �nite

execution fragment of the form

q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

;

9

and d

i

denote �(q

i

), the delay parameter associated with state q

i

, for 0 � i � n. Then let

�(�) denote the sequence d

0

d

1

: : : d

n

. We call �(�) the delay sequence of �. We use d, d

0

,

possibly subscripted or superscripted, to denote delay sequences. Let d = d

0

d

1

: : : d

n

and

d

0

= d

0

0

d

0

1

: : : d

0

n

be two arbitrary delay sequences. Then d + d

0

is the componentwise sum

of d and d

0

. This notation is used extensively in Sections 4, 5 and 6.

To simplify notation in the sequel, it will be convenient for us to adopt the following

convention regarding the application of � to triples (q; e; r) where e is not in the set E of

actions of A: if A = (Q; q

I

; E;�; �; �), and e 2 U n E, then we de�ne �(q; e; q) = 1 and

�(q; e; r) = 0 for all other r 2 Q.

3.1 Probability Distributions on Executions and Traces

Suppose A = (Q; q

I

; E;�; �; �) is a probabilistic I/O automaton. In this section, we con-

sider the problem of assigning probabilities to sets of executions of A. If A is an arbitrary

probabilistic I/O automaton, it does not make much sense to ask about the probability of

sets of executions of A, since we lack any sort of probabilistic description of when input

actions will occur and which ones they will be. There are two approaches that can be taken

to this problem. The �rst approach, which we adopt, is to de�ne the probability of sets

of executions of automata A only in case E

in

= ;; that is, A is a closed automaton, and

only for sets of native executions of A, since actions outside E are under the control of the

environment. In our approach, if we wish to make probabilistic statements about automata

A that are not closed, we �rst specify a \test" T to be performed on A. For us, a test is a

probabilistic I/O automaton that is \complementary" to A, in the sense that the composite

AjT makes sense and is a closed automaton. We then make probabilistic statements about

the behavior of AjT . In a sense, in this approach there are no non-probabilistic choices, only

choices for which probability information has not yet been speci�ed. The second approach

that can be taken is to accept the possibility of inherently non-probabilistic choices. This

leads to the introduction of the notion of an external \adversary" that resolves all such

choices. In this approach, a probabilistic automaton does not determine a single probabil-

ity space, but rather a separate probability space for each possible adversary. Probabilistic

statements are made about such automata by universally quantifying over adversaries. The

adversary approach has been studied by Segala and Lynch [SL94].

In any discussion of probability, it is necessary to begin by describing the probability

space. In our case, the set of basic outcomes is the set of all native executions of A (both

�nite and in�nite). If

� = q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

is a �nite native execution, then de�ne the set [�] to be the set of all �nite and in�nite

native executions � such that � = � or � is of the form

� = q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

e

n

�!q

n+1

: : :

In other words, for any �nite native execution �, the set [�] is the set of all �nite and

in�nite native executions � that extend �. De�ne a set of native executions of A to be

10

basic measurable if it is the union (possibly empty) of a �nite disjoint collection of sets of

the form [�] and singleton sets of the form f�g, where � is a �nite native execution with

[�] 6= f�g. A basic measurable set of the form f�g or of the form [�] is called simple.

Lemma 3.1 The collection of basic measurable sets of executions of A is nonempty, and

is closed under pairwise union, pairwise intersection, and complement. That is, it forms

an algebra of sets.

Proof { Let q

I

denote the unique execution with no actions, then [q

I

] is clearly basic

measurable. Next, observe that the intersection of two sets [�] and [�] is either ;, [�],

or [�]. From this, it is easy to see that the union of two basic measurable sets is basic

measurable, and the intersection of two basic measurable sets is basic measurable. To

show closure under complement, �rst observe that it follows from the local �nite-branching

property in the de�nition of probabilistic I/O automata that the complement of a set of

the form [�] is the union of a �nite disjoint collection of sets, consisting of the sets f�g,

where � is a proper pre�x of �, and sets of the form [�], where � is not a pre�x of �.

The same characterization holds true for the complement of a set f�g, where � is �nite.

This observation, together with closure under pairwise intersection and DeMorgan's laws,

implies that the complement of a basic measurable set is basic measurable.

We now show how to assign probability to basic measurable sets of executions. Suppose

� = q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

is a �nite native execution. To a simple basic measurable set of the form [�] we assign

probability as follows:

Pr([�]) =

n�1

Y

k=0

�(q

k

; e

k

; q

k+1

):

In particular Pr([q

I

]) = 1. To a simple basic measurable set of the form f�g, where [�] 6= f�g

we assign probability 0. This corresponds to the idea that stopping in a state for which

further transitions are enabled, occurs with probability zero. The de�nitions and results of

this paper all generalize easily to the case of nonzero stopping probability.

To each basic measurable set B =

S

n

i=1

B

i

represented as a �nite union of disjoint sets

B

i

of the form [�] or of the form f�g, where [�] 6= f�g, we assign probability as follows:

Pr(B) =

n

X

i=1

Pr(B

i

):

We must show that this assignment of probability to the set B is independent of the choice

of representation of B as

S

n

i=1

B

i

. This follows from Lemma 3.3 below.

Lemma 3.2 Suppose S is a simple basic measurable set and S =

S

m

i=1

S

i

, where S

i

are

disjoint simple basic measurable sets. Then

Pr(S) =

m

X

i=1

Pr(S

i

):

11

Proof { Suppose S is of the form f�g, where [�] 6= f�g, or of the form [�], where [�] = f�g.

Then there is precisely one way to represent S as a disjoint union of simple basic measurable

sets, so the result holds in this case.

In case S is of the form [�], where [�] 6= f�g, the proof proceeds by induction on the

rank k of a representation S =

S

m

i=1

S

i

, which we de�ne to be the number of sets S

i

that

are of the form f�g with [�] 6= f�g.

For the basis case, suppose k = 0. Then each set S

i

is of the form [�

i

]. In view of

the assumption that S =

S

m

i=1

S

i

is a disjoint union, it must be the case that m = 1 and

�

1

= �. Thus, Pr(S) =

P

1

i=1

Pr(S

i

) as required.

Now assume that the result has been shown for some k � 0, and suppose S =

S

m

i=1

S

i

is a representation of rank k+1. For 1 � i � m, let �

i

be chosen such that either S

i

= [�

i

]

or S

i

= f�

i

g. Since k + 1 > 0, the subset of f�

1

; �

2

; : : : ; �

m

g, consisting of all those �

i

for

which S

i

= f�

i

g with [�

i

] 6= f�

i

g, is nonempty. Let � be an execution of maximal length

chosen arbitrarily from this subset. Suppose � is of length n, so that

� = q

0

e

0

�!q

1

e

1

�!� � �

e

n�1

�!q

n

:

Let C = f�

1

; �

2

; � � � ; �

l

g be the set of all native executions of length n + 1 that properly

extend �. Then [�] = (

S

l

j=1

[�

j

])[f�g by de�nition of [�]. Now, � 2 S = [�], hence �

j

2 [�]

for 1 � j � l. Since S =

S

m

i=1

S

i

is a disjoint union, it follows that for each j with 1 � j � l

there exists a unique �

j

with 1 � �

j

� m and �

j

2 S

�

j

. Since �

j

is a minimal proper

extension of �, we must have �

�

j

= �

j

, so that each S

�

j

is either of the form [�

j

] or else

of the form f�

j

g with [�

j

] 6= f�

j

g. Only the former case is possible, since if S

�

j

= f�

j

g

with [�

j

] 6= f�

j

g we would have a contradiction with the assumption that � is of maximal

length.

Thus, we may write

[�] = (

l

[

j=1

[�

j

]) [f�g = (

l

[

j=1

S

�

j

) [f�g

and

S =

m

[

i=1

S

i

= (

[

1�i�m

�

i

62[�]

S

i

) [[�]:

Now, the last expression gives a representation of S of rank k, so by the induction hypothesis

we have

Pr(S) =

m

X

i=1

Pr(S

i

)�

l

X

j=1

Pr(S

�

j

) + Pr([�]) (1)

Since [�] 6= f�g, we have Pr(f�g) = 0 by de�nition, hence

Pr([�]) =

n�1

Y

k=0

�(q

k

; e

k

; q

k+1

)

12

=

n�1

Y

k=0

�(q

k

; e

k

; q

k+1

)

!

�

0

@

X

r2Q

X

e2E

loc

�(q

n

; e; r)

1

A

=

l

X

i=1

n

Y

k=0

�(�

i

(k); e

k

; �

i

(k + 1))

=

l

X

i=1

Pr([�

i

]);

where the second equality holds because

P

r2Q

P

e2E

loc

�(q

n

; e; r) = 1 by the stochastic

condition (3) in the de�nition of probabilistic I/O automata. Thus,

Pr([�]) =

l

X

i=1

Pr([�

i

]) + Pr(f�g)

=

l

X

j=1

Pr(S

�

j

) (2)

From equations (1) and (2), we conclude that

Pr(S) =

m

X

i=1

Pr(S

i

):

Lemma 3.3 Suppose B =

S

m

i=1

S

i

and B =

S

n

j=1

S

0

j

are two representations of a basic

measurable set B as a �nite disjoint union of simple basic measurable sets. Then

m

X

i=1

Pr(S

i

) =

n

X

j=1

Pr(S

0

j

)

Proof {

m

X

i=1

Pr(S

i

) =

m

X

i=1

Pr(S

i

\B) (B =

S

m

i=1

S

i

)

=

m

X

i=1

Pr(

n

[

j=1

(S

i

\ S

0

j

)) (B =

S

n

j=1

S

0

j

)

=

m

X

i=1

n

X

j=1

Pr(S

i

\ S

0

j

) (Lemma 3.2)

=

n

X

j=1

m

X

i=1

Pr(S

0

j

\ S

i

) (Exchange order of summation)

=

n

X

j=1

Pr(S

0

j

)

13

Lemma 3.4 Pr is a measure (a countably additive set function) on the algebra of basic

measurable sets.

Proof { It is obvious from the de�nitions that Pr is �nitely additive. We must show that

Pr is countably additive: for any countable disjoint sequence B

0

; B

1

; : : : of basic measurable

sets whose union B is basic measurable, we have

Pr(B) =

1

X

i=0

Pr(B

i

):

But if B =

S

1

i=0

B

i

, then B is in fact a countable union of simple basic measurable sets. A

K�onig's Lemma argument shows that if a basic measurable set B is a countable union of

simple basic measurable sets S

j

, then at most �nitely many of the sets S

j

can be nonempty.

Hence for the class of basic measurable sets, countable additivity reduces to �nite additivity.

Proposition 3.5 Pr extends to a complete measure (which we also denote by Pr) on a

�-algebra containing the algebra of basic measurable sets. Moreover, since Pr([q

I

]) = 1, it

follows that Pr is a probability measure.

Proof { This is a corollary of the Extension Theorem for measures [Wei74, Theorem 2,

p. 97] which states that any measure de�ned on a ring R extends to a complete measure

on a �-algebra containing R.

We can also assign probabilities to sets of traces. Still working with respect to a prob-

abilistic I/O automaton A, we de�ne a set V of traces of A to be measurable if tr

�1

A

(V) is

a measurable set of executions of A. To each such set we assign probability as follows:

Pr(V) = Pr(tr

�1

(V)):

It is easy to check that these de�nitions determine a probability space on the set of traces.

3.2 Composition

A collection fA

i

: i 2 Ig of probabilistic I/O automata, where

A

i

= (Q

i

; q

I

i

; E

i

;�

i

; �

i

; �

i

);

is called compatible if the corresponding collection of underlying I/O automata is compati-

ble. The composition

Q

i2I

A

i

of a �nite compatible collection of probabilistic I/O automata

is de�ned to be the sextuple (Q; q

I

; E;�; �; �), where

1. Q, q

I

, E, and � are de�ned as for composition of ordinary I/O automata.

2. �(hq

i

: i 2 Ii) =

P

i2I

�

i

(q

i

).

14

3. If e 2 E

in

, then

�(hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) =

Y

fi2I:e2E

i

g

�

i

(q

i

; e; r

i

):

If e 2 E

loc

k

for some k, then

�(hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) =

�

k

(q

k

)

P

i2I

�

i

(q

i

)

Y

fi2I:e2E

i

g

�

i

(q

i

; e; r

i

):

In this paper, we restrict our attention to the composition of �nite collections only. The

�niteness assumption ensures that the sum in (2) converges, and that the products appear-

ing in the de�nition of � are nonzero.

The de�nition of composition can be motivated as follows: In any given state q = hq

i

:

i 2 Ii of a composite automaton A =

Q

i2I

A

i

, the component automata A

i

participate in a

race to see which one will be the next to execute a locally controlled action. Conceptually,

when each component automaton A

i

enters its local state q

i

, it chooses a random \delay

period" from an exponential distribution with parameter �

i

(q

i

). It then delays for this

amount of time before executing its next locally controlled action. The winner of the race

from state q will be that component automaton A

i

with the least amount of time to wait.

Because of the \memoryless" property of the exponential distribution, it is not necessary

for us to keep track in the composite automaton of how long each component automaton

A

i

has already delayed in state q

i

|the amount of time A

i

has left to delay in state q

i

is

described by the same exponential distribution with parameter �

i

(q

i

), regardless of how

long A

i

has already delayed. This fact simpli�es the de�nition of composition considerably,

and would also be important if we wished to construct a real-world implementation of the

probabilistic behavior modeled by these automata.

Assuming that the random delay periods associated with the component automata

A

i

are independent, the probability that the winner of the race from state q will be a

particular component A

k

is the probability that the random delay period chosen by A

k

is

the minimum among all the delay periods chosen by the A

i

. This probability is the ratio

�

k

(q

k

)=

P

i2I

�

i

(q

i

).

The distribution of the time that composite automaton A delays in state q before

executing its next locally controlled action is the distribution of the minimum of the delay

times of each of the components. Here the situation is simpli�ed by another property of the

exponential distribution: the distribution of the minimum of a �nite collection hx

i

: i 2 Ii

of independent random variables, where x

i

is exponentially distributed with parameter

�

i

(q

i

), is again exponentially distributed with parameter

P

i2I

�

i

(q

i

) [Tri82]. This explains

the de�nition of �.

The de�nition of � can now be explained as follows: If it has already been determined

that the next action to be executed is a particular input action e, then the probability

of choosing a particular transition (q; e; r), where q = hq

i

: i 2 Ii and r = hr

i

: i 2 Ii

is simply the joint probability that component A

i

executes (q

i

; e; r

i

), for all i 2 I such

15

that e 2 E

i

. Assuming independence, this joint probability is just the product of the

individual probabilities �

i

(q

i

; e; r

i

). On the other hand, if it has been determined that the

next action to be executed is not an input action, but rather a locally controlled action,

then which locally controlled action is actually executed depends on the outcome of the

race for control between the component automata. The probability that the transition

executed will be (q; e; r), where q = hq

i

: i 2 Ii and r = hr

i

: i 2 Ii, and e 2 E

loc

k

is locally

controlled by A

k

, is the joint probability that each A

i

will execute transition (q

i

; e; r

i

),

times the probability that A

k

will win the race. Assuming independence, the former is

just the product of the individual probabilities �

i

(q

i

; e; r

i

). As already discussed, the latter

probability is the ratio �

k

(q

k

)=

P

i2I

�

i

(q

i

).

Proposition 3.6 If fA

i

: i 2 Ig is a �nite compatible collection of probabilistic I/O au-

tomata, then

Q

i2I

A

i

is also a probabilistic I/O automaton.

Proof { Suppose A

i

= (Q

i

; q

I

i

; E

i

;�

i

; �

i

; �

i

) and A =

Q

i2I

A

i

.

We �rst verify the local �nite-branching property and the input image-�niteness prop-

erty. Since I is �nite, and by input image-�niteness of the A

i

, the sets fr

i

: (q

i

; e; r

i

) 2 �

i

g

are �nite for all q

i

2 Q

i

and e 2 E

in

i

, it follows that the set fr : (q; e; r) 2 �g is �-

nite for all q 2 Q and e 2 E

in

, so that A is input image-�nite. By de�nition of com-

position, e 2 E

loc

exactly when there is a unique k such that e 2 E

loc

k

and such that

whenever i 6= k if e 2 E

i

then e 2 E

in

i

. By the local �nite-branching property of A

k

,

the set f(q

k

; e; r

k

) 2 �

k

: e 2 E

loc

k

g is �nite, and by the input image-�niteness property

of the A

i

, the sets f(q

i

; e; r

i

) 2 �

i

: e 2 E

in

i

g are �nite for all q

i

2 Q

i

. Thus, the set

f(q; e; r) 2 � : e 2 E

loc

g is also �nite, so that A has local �nite-branching.

We next verify that � and � have the required properties. First, consider �. Clearly,

since I is �nite and �

i

(q

i

) 2 [0;1) for all i 2 I and q

i

2 Q

i

, it follows that �(hq

i

: i 2

Ii) =

P

i2I

�

i

(q

i

) 2 [0;1) as well. If �(q) = 0, then for all i 2 I there exist no e 2 E

loc

i

and r

i

2 Q

i

such that (q

i

; e; r

i

) 2 �

i

, hence there exist no e 2 E

loc

and r 2 Q such that

(q; e; r) 2 �. Conversely, if there exist no e 2 E

loc

and r 2 Q such that (q; e; r) 2 �, then

there can be no i 2 I, e 2 E

loc

i

, and r

i

2 Q

i

such that (q

i

; e; r

i

) 2 �

i

, thus �

i

(q

i

) = 0 for all

i 2 I and hence �(q) = 0.

Next, consider �. We �rst show that �(q; e; r) 2 (0; 1] whenever (q; e; r) 2 �. If e 2 E

in

,

then

�(hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) =

Y

fi2I:e2E

i

g

�

i

(q

i

; e; r

i

);

which is in (0; 1] because I is �nite and because �

i

(q

i

; e; r

i

) 2 (0; 1] whenever e 2 E

i

. If

e 2 E

loc

, then e 2 E

loc

k

for some k 2 I, and

�(hq

i

: i 2 Ii; e; hr

i

: i 2 Ii) =

�

k

(q

k

)

P

i2I

�

i

(q

i

)

Y

fi2I:e2E

i

g

�

i

(q

i

; e; r

i

):

Since (q

k

; e; r

k

) 2 �

k

, we have �

k

(q

k

) > 0. Since I is �nite, and since �

i

(q

i

; e; r

i

) > 0 for

each i such that e 2 E

i

, it follows that �(q; e; r) > 0.

16

Next, we prove that � satis�es stochastic conditions (2) and (3) in the de�nition of

probabilistic I/O automata. Suppose q = hq

i

: i 2 Ii 2 Q and e 2 E

in

. Then

X

r2Q

�(q; e; r) =

X

r2Q

Y

fi2I:e2E

i

g

�

i

(q

i

; e; r

i

)

=

Y

fi2I:e2E

i

g

X

r

i

2Q

i

�

i

(q

i

; e; r

i

)

= 1;

where the interchange of the sum and product is justi�ed becauseQ is the Cartesian product

of the Q

i

. Finally, suppose q = hq

i

: i 2 Ii 2 Q, and consider

X

r2Q

X

e2E

loc

�(q; e; r) =

X

r2Q

X

k2I

X

e2E

loc

k

�

k

(q

k

)

�(q)

Y

fi2I:e2E

i

g

�

i

(q

i

; e; r

i

):

If there is no e 2 E

loc

and r 2 Q such that (q; e; r) 2 �, then there can be no k 2 I,

e 2 E

loc

k

, and r

k

2 Q

k

such that (q

k

; e; r

k

) 2 �

k

, hence �

k

(q

k

) = 0 for all k, and the above

sum is zero. Otherwise, if e 2 E

loc

and r 2 Q are such that (q; e; r) 2 �, then e 2 E

loc

k

for

some k 2 I, and we have

X

r2Q

X

k2I

X

e2E

loc

k

�

k

(q

k

)

�(q)

Y

fi2I:e2E

i

g

�

i

(q

i

; e; r

i

) =

X

k2I

X

e2E

loc

k

�

k

(q

k

)

�(q)

X

r2Q

Y

fi2I:e2E

i

g

�

i

(q

i

; e; r

i

)

=

X

k2I

�

k

(q

k

)

�(q)

X

e2E

loc

k

Y

fi2I:e2E

i

g

X

r

i

2Q

i

�

i

(q

i

; e; r

i

)

=

X

k2I

�

k

(q

k

)

�(q)

X

r

k

2Q

k

X

e2E

loc

k

�

k

(q

k

; e; r

k

)

= 1;

where the penultimate equality holds because

P

r

i

2Q

i

�

i

(q

i

; e; r

i

) = 1 whenever e 2 E

in

i

;

that is, whenever i 6= k.

4 Behaviors of Probabilistic I/O Automata

In this section and the next section, we consider the restricted class of probabilistic I/O

automata A = (Q; q

I

; E;�; �; �) for which the set E

int

of internal actions is empty. We wish

to associate with such an automaton a more abstract representation in which we ignore

the details of the particular state set and transition relation of the automaton, and focus

instead on externally observable aspects of its probabilistic behavior.

Suppose A is a probabilistic I/O automaton without internal actions. Given a trace

� = e

0

e

1

: : : e

n�1

, for each delay sequence d = d

0

d

1

: : : d

n

de�ne the quantity p

A

�

(d) by:

p

A

�

(d) =

X

�

n�1

Y

k=0

�

A

(�(k); e

k

; �(k + 1));

17

where the summation is taken over all executions � of A having trace � and delay sequence

d. Observe that convergence of the summation is automatic, since by the local �nite-

branching and input image-�niteness properties of A, the set f� : tr(�) = �g is �nite. The

same reasoning also shows that, for a �xed �, the set of all d for which p

A

�

(d) is nonzero,

is �nite. In case the set of input actions of A is empty, and � contains only actions in E

A

,

the quantity p

A

�

(d) is the probability of the set of all native executions of A having � as a

pre�x of their trace and d as a pre�x of their delay sequence.

Now, if

g : R

n+1

!R

is a real-valued function, de�ne

E

A

�

[g(D)] =

X

d

g(d)p

A

�

(d);

where the sum ranges over all (n+1)-tuples d = (d

0

; d

1

; : : : ; d

n

) of nonnegative real numbers.

We may view E

A

�

as a functional

E

A

�

: (R

n+1

!R)! R:

In case the set of input actions of A is empty, we may regard the sequences d as the values

of an (n+1)-dimensional random variable D = (D

0

; D

1

; : : : ; D

n

) de�ned on the conditional

probability space X

�

of native executions of A whose traces extend �. In this case, the

quantity E

A

�

[g(D)] is just the expectation of g(D), times the probability p

A

�

of the set X

�

.

Our abstract representation for probabilistic I/O automata assigns, to each probabilistic

I/O automaton A without internal actions, the mapping E

A

that takes each trace � 2 U

�

of length n to the functional E

A

�

on R

n+1

! R. We call the mapping E

A

the probabilistic

behavior map associated with A. In the next section, we show that probabilistic behavior

maps are fully abstract with respect to a natural notion of probabilistic testing.

The compositionality of the representation of automata by probabilistic behavior maps

is established in Theorem 1 below. In this theorem, AjB denote the composition of com-

patible automata A and B, and D

AjB

, D

A

, and D

B

denote (n + 1)-dimensional random

variables representing the random sequences of delay parameters in an execution of AjB,

A, and B, respectively. These symbols are used (as is conventional in probability theory)

as dummies indicating the variables over which the summations are to be taken; thus the

notation E

AjB

denotes a summation over D

AjB

, the notation E

A

denotes a summation over

D

A

, and the notation E

B

denotes a summation over D

B

.

Theorem 1 Suppose A and B are compatible probabilistic I/O automata that have no

internal actions and � = e

0

e

1

: : : e

n�1

. Then

E

AjB

�

[g(D

AjB

)] = E

B

�

[E

A

�

[g(D

A

+D

B

) � h(D

A

;D

B

)]];

where

h(D

A

;D

B

) =

0

B

@

Y

k2K

out

A

D

A

k

D

A

k

+D

B

k

1

C

A

0

B

@

Y

k2K

out

B

D

B

k

D

A

k

+D

B

k

1

C

A

18

K

out

A

= fk : 0 � k < n; e

k

2 E

out

A

g and K

out

B

= fk : 0 � k < n; e

k

2 E

out

B

g

Proof { By de�nition,

E

AjB

�

[g(D

AjB

)] =

X

d

g(d)p

AjB

�

(d);

in which the quantity p

AjB

�

(d) is given by the following:

p

AjB

�

(d) =

X

�

n�1

Y

k=0

�

AjB

(�(k); e

k

; �(k + 1));

where the summation is taken over all executions � of AjB having trace � and delay

sequence d. Substituting, we have

E

AjB

�

[g(D

AjB

)] =

X

d

g(d)

X

�

n�1

Y

k=0

�

AjB

(�(k); e

k

; �(k + 1)):

By Proposition 2.1 and the de�nition of composition for probabilistic I/O automata, the

executions � of AjB having trace � and delay sequence d are in bijective correspondence

with pairs of executions (�

A

; �

B

), such that �

A

and �

B

both have trace �, and such that

�(�

A

) + �(�

B

) = d. Using this fact and the de�nition of �

AjB

we can rewrite the above

expression as follows:

E

AjB

�

[g(D

AjB

)] =

X

d

B

X

d

A

g(d

A

+ d

B

)

X

�

A

X

�

B

n�1

Y

k=0

�

A

(�

A

(k); e

k

; �

A

(k + 1))

!

0

B

@

Y

k2K

out

A

d

A

k

d

A

k

+ d

B

k

1

C

A

n�1

Y

k=0

�

B

(�

B

(k); e

k

; �

B

(k + 1))

!

0

B

@

Y

k2K

out

B

d

B

k

d

A

k

+ d

B

k

1

C

A

;

where �

A

ranges over all executions of A having trace � and delay sequence d

A

, and �

B

ranges over all executions of B having trace � and delay sequence d

B

. Rearranging terms

gives

E

AjB

�

[g(D

AjB

)] =

X

d

B

X

d

A

g(d

A

+ d

B

)

0

B

@

Y

k2K

out

A

d

A

k

d

A

k

+ d

B

k

1

C

A

0

B

@

Y

k2K

out

B

d

B

k

d

A

k

+ d

B

k

1

C

A

X

�

A

n�1

Y

k=0

�

A

(�

A

(k); e

k

; �

A

(k + 1))

!

X

�

B

n�1

Y

k=0

�

B

(�

B

(k); e

k

; �

B

(k + 1))

!

or more simply,

X

d

B

X

d

A

g(d

A

+ d

B

) � h(d

A

;d

B

) � p

A

�

(d

A

) � p

B

�

(d

B

):

19

But this is easily recognized as

E

B

�

[E

A

�

[g(D

A

+D

B

) � h(D

A

;D

B

)]];

as was to be shown.

5 Testing Equivalence and Full Abstraction

In this section we show that probabilistic behavior maps are fully abstract with respect

to a notion of probabilistic testing equivalence based on the classical testing theory of

Hennessy and DeNicola [dNH83]. That is to say, probabilistic I/O automata A and B

determine the same probabilistic behavior map if and only if in a certain sense they cannot

be distinguished by any probabilistic test.

Formally, a test is simply a probabilistic I/O automaton T that has a distinguished

output action !. We interpret the occurrence of ! in a computation of T as an indication

that the test has succeeded. A test is called closed if its set of input actions is empty.

For closed tests T , it makes sense (see Section 3.1) to talk about the probability of sets of

executions of T .

Lemma 5.1 Suppose T is a closed test. Then the set of all successful native executions of

T is measurable. The probability of this set is given by the formula

X

�2

�

E

T

�!

[1];

where

�

 is the set of all traces that do not contain !.

Proof { The probability of success of T is the probability of the set of all native executions

of T that contain an occurrence of !. This set can be represented as a countable union of

disjoint sets of the form [�], where � ranges over all �nite native executions

� = q

0

e

0

�!q

1

e

1

�! : : :

e

n�1

�!q

n

!

�!q

n+1

;

in which ! appears for the �rst time as the last action. Let e

n

= !, then the probability

of each set [�] is given by

Pr([�]) =

n

Y

k=0

�

T

(q

k

; e

k

; q

k+1

):

Thus, the probability of success of T can be expressed as

X

�2

�

X

tr(�)=�!

n

Y

k=0

�

T

(�(k); e

k

; �(k + 1));

20

which is just

X

�2

�

E

T

�!

[1];

as was to be shown.

The probability of the set of all successful native executions of a closed test T is called

the success probability of T .

Suppose A = (Q

A

; q

I

A

; E

A

;�

A

; �

A

; �

A

) is a probabilistic I/O automaton. A proper test

for A is a test T = (Q

T

; q

I

T

; E

T

;�

T

; �

T

; �

T

) such that E

in

T

� E

out

A

, E

in

A

� E

out

T

n f!g, and

E

loc

A

\ E

loc

T

= ;. If T is a proper test for A, then the collection fA; Tg is compatible. Let

AjT denote its composition, then AjT is a closed system.

If A and B are probabilistic I/O automata with the same set of actions, then we call

A and B testing equivalent if for all proper tests T for A and B, the success probability of

AjT equals the success probability of BjT .

We now de�ne a particular class of tests that will be useful for distinguishing proba-

bilistic I/O automata. Let a set of actions E = E

0

[E

1

be �xed, with E

0

and E

1

disjoint.

For each trace � = e

0

e

1

: : : e

n�1

with e

k

2 E for 0 � k < n, and for each sequence

x = x

0

; x

1

; : : : ; x

n

of positive real numbers, we de�ne a test T

�;x

= (Q; q

I

; E

T

;�; �; �) as

follows:

� Q = f0; 1; 2; : : : ; n; n+ 1g.

� q

I

= 0.

� E

T

= E [f!; �g, with E

in

T

= E

1

and E

out

T

= E

0

[f!; �g.

� � is the union of the following sets:

1. f(k; e

k

; k + 1) : 0 � k < ng

2. f(n; !; n+ 1)g

3. f(k; �; n+ 1) : 0 � k < ng

4. f(k; e; n+ 1) : 0 � k < n; e 2 E

in

T

; e 6= e

k

g

5. f(n; e; n+ 1) : e 2 E

in

T

g.

6. f(n + 1; e; n+ 1) : e 2 E

in

T

g.

21

... e ET
ine0 e1

xnn-1ex0 x1 x2 xn-1

ET
in

ek\{ }e

n-1 n0 21 n+1ω 0

∗

Figure 1: Test T

�;x

� � is de�ned as follows:

1. If 0 � k < n, then

�(k; e

k

; k + 1) =

(

1; if e

k

2 E

in

T

1=2 otherwise:

2. �(n; !; n+ 1) = 1:

3. If 0 � k < n, then

�(k; �; n+ 1) =

(

1; if e

k

2 E

in

T

1=2 otherwise:

4. If 0 � k < n, e 2 E

in

T

, and e 6= e

k

, then �(k; e; n+ 1) = 1:

5. If e 2 E

in

T

, then �(n; e; n+ 1) = 1; and �(n+ 1; e; n+ 1) = 1:

� �(k) = x

k

for 0 � k � n and �(n+ 1) = 0.

Figure 1 depicts the structure of test T

�;x

. Intuitively, T

�;x

succeeds when it manages

to produce the trace �! by passing successively through states 0; 1; 2; : : : ; n and �nally

to n + 1. For 0 � k � n, the state k has delay parameter x

k

, so the delay sequence �(�)

associated with a successful execution � of T

�;x

is the sequence x

0

x

1

: : : x

n

0. This is the only

way executions of T

�;x

can succeed; executions that deviate from � in the initial section

cause T

�;x

to enter the state n+ 1 without performing the success action !. In each state

k, where 0 � k < n, the test T

�;x

has a nonzero chance of failing by performing the action

� and going directly to state n+ 1. This gives T

�;x

a certain sensitivity to the delays of its

environment.

Lemma 5.2 Suppose A is a probabilistic I/O automaton without internal actions. Then

for each trace � = e

0

e

1

: : : e

n�1

2 E

�

A

, and for each sequence x = x

0

; x

1

; : : : ; x

n

of positive

real numbers, the test T

�;x

(with E

0

= E

in

A

and E

1

= E

out

A

) is a proper test for A. Moreover,

the success probability of AjT

�;x

is given by:

2

�c

� E

A

�!

[

n

Y

k=0

y

k

x

k

+D

A

k

];

22

where for all 0 � k < n we have

y

k

=

(

D

A

k

; if e

k

2 E

out

A

x

k

otherwise;

y

n

= x

n

, and c is the number of k 2 f0; 1; : : : ; n� 1g for which e

k

2 E

in

A

.

Proof { Fix � and x, and let T abbreviate T

�;x

. We �rst verify that T is a proper test for

A. By the construction of T , it is obvious that T is a test (a probabilistic I/O automaton

with distinguished action !). Since E

in

T

= E

out

A

, and E

in

A

� E

out

T

, it follows that T is a

proper test for A.

By Lemma 5.1, the success probability of AjT is given by:

X

�

0

2

�

E

AjT

�

0

!

[1];

where

�

 is the set of all traces that do not contain !. By Theorem 1, this may be rewritten

as follows:

X

�

0

2

�

E

A

�

0

!

[E

T

�

0

!

[h(D

A

;D

T

)]];

where

h(D

A

;D

T

) =

0

B

@

Y

k2K

out

A

D

A

k

D

A

k

+D

T

k

1

C

A

0

B

@

Y

k2K

out

T

D

T

k

D

A

k

+D

T

k

1

C

A

and index sets K

out

A

and K

out

T

contain the indices of actions in �

0

! that are output actions

of A and T respectively.

Now, observe that T has just one execution that produces a trace of the form �

0

!,

namely

0

e

0

�!1

e

1

�!2

e

2

�! : : :

e

n�1

�!n

!

�!n + 1;

which produces trace �!. From this it is easy to see that E

T

�

0

!

[h(D

A

; D

T

)] = 0 unless

�

0

= �, and that

E

T

�!

[h(D

A

;D

T

)] = 2

�c

�

0

B

@

Y

k2K

out

A

D

A

k

D

A

k

+ x

k

1

C

A

0

B

@

Y

k2K

out

T

x

k

D

A

k

+ x

k

1

C

A

;

where c is the number of k 2 f0; 1; : : : ; n� 1g such that e

k

2 E

in

A

. Using this information

and the fact that each e

k

is an output action of either A or T , the success probability of

AjT may be rewritten as:

2

�c

� E

A

�!

[

n

Y

k=0

y

k

x

k

+D

A

k

];

where for all 0 � k < n we have

y

k

=

(

D

A

k

; if e

k

2 E

out

A

x

k

otherwise;

23

and y

n

= x

n

.

Lemma 5.3 below is a uniqueness theorem for partial fraction expansions of rational

functions in several variables. It is a key component of the proof of full abstraction (The-

orem 2). We state a somewhat more general version than our present needs dictate; the

extra generality will be used in Section 6. See Appendix A for the proof of Lemma 5.3

Lemma 5.3 Suppose f and f

0

are two rational functions of variables x

0

; x

1

; : : : ; x

n�1

(n �

0), de�ned as follows:

f =

X

i2I

a

i

Q

n�1

k=0

(x

k

+ b

i;k

)

r

i;k

f

0

=

X

i2I

0

c

i

Q

n�1

k=0

(x

k

+ d

i;k

)

s

i;k

;

where I and I

0

are �nite sets, for each i 2 I and 0 � k < n, the exponent r

i;k

is a positive

integer and a

i

2 (0;1), for each i 2 I

0

and 0 � k < n, the exponent s

i;k

is a positive

integer and c

i

2 (0;1), for each distinct i; j 2 I the sets f(k; b

i;k

; r

i;k

) : 0 � k < ng and

f(k; b

j;k

; r

j;k

) : 0 � k < ng are distinct, and for each distinct i; j 2 I

0

the sets f(k; d

i;k

; s

i;k

) :

0 � k < ng and f(k; d

j;k

; s

j;k

) : 0 � k < ng are distinct. If f = f

0

, then there exists a

bijection (-)

0

: I ! I

0

such that a

i

= c

i

0

, b

i;k

= d

i

0

;k

and r

i;k

= s

i

0

;k

for all i 2 I and

0 � k < n.

Theorem 2 Suppose A and B are probabilistic I/O automata with the same set of actions

for which the set of internal actions is empty. Then A and B are testing equivalent if and

only if the associated probabilistic behavior maps E

A

and E

B

are equal.

24

Proof { Suppose E

A

= E

B

, and let T be an arbitrary proper test for A and B. By

Lemma 5.1, the success probability of AjT is

X

�

E

AjT

�!

[1]

and the success probability of BjT is

X

�

E

BjT

�!

[1] ;

where � ranges over all traces that do not contain !. Applying Theorem 1 we can express

the success probability of AjT as

X

�

E

A

�!

[E

T

�!

[h(D

A

;D

T

)]] ;

where

h(D

A

;D

T

) =

0

B

@

Y

k2K

out

A

D

A

k

D

A

k

+D

T

k

1

C

A

0

B

@

Y

k2K

out

T

D

T

k

D

A

k

+D

T

k

1

C

A

:

Similarly, we can express the success probability of BjT as

X

�

E

B

�!

[E

T

�!

[h(D

B

;D

T

)]] :

Since E

B

= E

A

by hypothesis, it follows that the two success probabilities are equal. Since

for an arbitrary T , the success probability of AjT equals the success probability of BjT , it

follows that A and B are testing equivalent.

Conversely suppose A and B are testing equivalent. Then for all tests T , the success

probability of AjT equals the success probability of BjT . In particular, this is true for all

tests of the form T

�;x

for any � = e

0

e

1

: : : e

n�1

. By Lemma 5.2, the success probability of

AjT

�;x

is given by

s

A

(x) = 2

�c

� E

A

�!

[

n

Y

k=0

y

k

x

k

+D

A

k

]

and the success probability of BjT

�;x

is given by

s

B

(x) = 2

�c

� E

B

�!

[

n

Y

k=0

y

0

k

x

k

+D

B

k

] ;

where c is the number of k 2 f0; 1; : : : ; n � 1g for which e

k

2 E

in

A

(= E

in

B

), y

n

= y

0

n

= x

n

,

and for all 0 � k < n we have

y

k

=

(

D

A

k

; if e

k

2 E

out

A

x

k

otherwise;

and y

0

k

=

(

D

B

k

; if e

k

2 E

out

B

x

k

otherwise:

25

Since s

A

(x) = s

B

(x) by the hypothesis that A and B are testing equivalent, and by the

de�nition of E

A

�!

we have

X

i2I

p

A

�!

(d

i

) �

Q

k2K

out

d

i;k

Q

n

k=0

(x

k

+ d

i;k

)

=

X

i

0

2I

0

p

B

�!

(d

0

i

0

) �

Q

k2K

out

d

0

i

0

;k

Q

n

k=0

(x

k

+ d

0

i

0

;k

)

where

K

out

= fk : 0 � k � n; e

n

2 E

out

A

(= E

out

B

)g ;

fd

i

: i 2 Ig is the �nite set of sequences d for which p

A

�!

(d) is nonzero, and fd

0

i

0

: i

0

2 I

0

g

is the �nite set of sequences d

0

for which p

B

�!

(d

0

) is nonzero.

Thus, we have two rational functions in the variables x

0

; x

1

; : : : ; x

n

which are equal for

all positive values of their arguments. From basic properties of rational functions, if two

such functions are de�ned and equal for all values in some open interval, then they are

equal at all points where either of them is de�ned. Then, applying Lemma 5.3, there exists

a bijection (-)

0

: I ! I

0

such that for all i 2 I,

d

i

= d

0

i

0

and p

A

�!

(d

i

) �

Y

k2K

out

d

i;k

= p

B

�!

(d

0

i

0

) �

Y

k2K

out

d

0

i

0

;k

Since the products

Q

k2K

out

d

i;k

and

Q

k2K

out

d

0

i

0

;k

are positive by the assumption that p

A

�!

(d

i

)

and p

B

�!

(d

0

i

) are nonzero, and since p

A

�!

(d) = 0 except when d = d

i

for some i 2 I, and

similarly for p

B

�!

(d), we have shown that for all traces � = e

0

e

1

: : : e

n�1

in which ! does

not appear, and for all sequences d = d

0

d

1

: : : d

n�1

d

n

d

n+1

we have

p

A

�!

(d) = p

B

�!

(d):

Now,

p

A

�!

(d) =

X

�

n�1

Y

k=0

�

A

(�(k); e

k

; �(k + 1))

!

� �

A

(�(n); !; �(n+ 1));

where the summation is taken over all executions � of A having trace �! and delay sequence

d = d

0

d

1

: : : d

n�1

d

n

d

n+1

. However, ! 62 E

A

, so the only such executions are those whose

last transition is of the form (q; !; q). It follows from this observation that

p

A

�!

(d

0

d

1

: : : d

n

d

n+1

) = p

A

�

(d

0

d

1

: : : d

n

)

for all traces � and all sequences d

0

d

1

: : : d

n

d

n+1

. Similar reasoning applies to B, so we may

conclude that

p

A

�

(d) = p

B

�

(d)

for all traces � in which ! does not appear, and all sequences d. Moreover, this conclusion

holds even without the restriction that ! not appear in �. For, given trace � containing

occurrences of !, it is easy to see that p

A

�

= p

A

�

0

, where �

0

is obtained by changing all

occurrences of ! in � to some other symbol !

0

not in E

A

. One may do the same thing for

p

B

�

, and then apply p

A

�

0

= p

B

�

0

.

We have thus shown that p

A

�

(d) = p

B

�

(d) for all traces � and all sequences d. From this,

it follows by the de�nition of E

A

�

and E

B

�

that E

A

�

= E

B

�

for all traces �. In other words,

E

A

= E

B

, as was to be shown.

26

6 Probabilistic I/O Automata with Internal Actions

In this section, we consider the class of probabilistic I/O automata A = (Q; q

I

; E;�; �; �)

satisfying the following conditions:

� For all (q; e; r) 2 �, if e 2 E

int

then �(r) = �(q).

� The divergence-free condition: for all q 2 Q, there exists no in�nite sequence q

0

; q

1

; � � �

with q = q

0

and q

i

e

i

�!q

i+1

for actions e

i

2 E

int

.

The �rst condition states that internal transitions do not change the state delay param-

eters, and the second condition is imposed so that at most �nitely many states can be

reached from any given state by internal executions. We call probabilistic I/O automata

satisfying these conditions delay-restricted probabilistic I/O automata. It is easy to verify

that the composition of two compatible delay-restricted probabilistic I/O automata is also

a delay-restricted automaton. For any composite state hq; ri, if an internal action e is en-

abled, then by the compatibility condition, either q

e

�!q

0

or r

e

�!r

0

. Suppose q

e

�!q

0

, then

hq; ri

e

�!hq

0

; ri. Since �(q) = �(q

0

), it follows that �(hq; ri) = �(hq

0

; ri). The case r

e

�!r

0

is similar. The divergence-free condition on component states q and r also implies there

exists no in�nite sequence of internal steps starting from state hq; ri.

By applying techniques similar to those used in Sections 4 and 5, we show how to as-

sociate with a delay-restricted automaton an abstract representation, similar to the prob-

abilistic behavior maps for probabilistic I/O automata without internal actions, that is

compositional and fully abstract with respect to probabilistic testing.

6.1 Behaviors

Suppose A = (Q; q

I

; E;�; �; �) is a delay-restricted probabilistic I/O automaton. For each

sequence � = e

0

e

1

: : : e

m�1

of external actions, i.e. � 2 (U

ext

)

�

, de�ne the set Ext

A

�

to be

the set of all executions of A having traces of the form:

�

�

e

0

�

�

e

1

: : : �

�

e

m�1

;

where �

�

denotes any �nite number of internal actions of A. That is, the set Ext

A

�

contains

all executions � of A having external trace � and ending with action e

m�1

. Using a K�onig's

Lemma argument, the local �nite-branching property, the input image-�niteness property,

and the divergence-free property of A, one can show that for each sequence � of external

actions, the set Ext

A

�

is �nite.

Suppose � is an execution in Ext

A

�

that has n

k

internal steps immediately before doing

action e

k

, 0 � k < m. Then we represent � as:

27

�(0; 0)

�

0;0

���!

�(0; 1)

�

0;1

���!

� � �

�

0;n

0

�1

�����!

�(0; n

0

)

e

0

��!

�(1; 0)

�

1;0

���!

� � �

�

m�1;n

m�1

�1

���������!

�(m� 1; n

m�1

)

e

m�1

����!

�(m; 0)

where for 0 � k < m and 0 � i < n

k

, �

k;i

2 E

int

. Usually it is not necessary to identify

each internal action and we abbreviate the above sequence as:

�(0; 0)

�

n

0

====)

�(0; n

0

)

e

0

��!

�(1; 0)

�

n

1

====)

� � �

�

n

m�1

======)

�(m� 1; n

m�1

)

e

m�1

����!

�(m; 0):

By the �rst condition of delay-restricted probabilistic I/O automata, the delay sequence

of � is simply of the form (d

0

)

n

0

+1

(d

1

)

n

1

+1

� � � (d

m�1

)

n

m�1

+1

(d

m

)

1

for some delay parameters

d

0

; d

1

; � � � ; d

m

. It will be convenient to denote such a delay sequence as the pair (d;n), where

d 2 R

m+1

is the sequence of delay parameters d

0

d

1

� � �d

m

, and n 2 N

m

is the sequence

of nonnegative integers n

0

n

1

� � �n

m�1

, giving the number of internal actions between each

successive pair of external actions.

Let A = (Q; q

I

; E;�; �; �) be a delay-restricted probabilistic I/O automaton. Given an

external trace � = e

0

e

1

: : : e

m�1

, for each delay sequence (d;n), de�ne the quantity p

A

�

(d;n)

by:

p

A

�

(d;n) =

X

�

m�1

Y

k=0

0

@

n

k

�1

Y

i=0

�

A

(�(k; i)

�

k;i

�!�(k; i+ 1))

1

A

� �

A

(�(k; n

k

); e

k

; �(k + 1; 0));

where the summation is taken over all executions � in Ext

A

�

having delay sequence (d;n).

Since the set Ext

A

�

is �nite, the summation converges, and for a �xed �, the set of all (d;n)

for which p

A

�

(d;n) is nonzero, is �nite.

Now, in a fashion analogous to Section 4, if

g : R

m+1

�N

m

! R

is a real-valued function, de�ne

E

A

�

[g(D;N)] =

X

(d;n)

g(d;n)p

A

�

(d;n);

where the summation ranges over all pairs (d;n) 2 R

m+1

� N

m

for which p

A

�

(d;n) is

nonzero. We may view E

A

�

as a functional

E

A

�

: (R

m+1

�N

m

!R)!R:

Our abstract representation for delay-restricted probabilistic I/O automata assigns, to

each automaton A, the mapping E

A

that takes each external trace � 2 (U

ext

)

�

of length m

to the functional E

A

�

on R

m+1

� N

m

! R. We also call the mapping E

A

the probabilistic

behavior map associated with A. The compositionality of the representation of delay-

restricted automata by probabilistic behavior maps is established in the following theorem:

28

Theorem 3 Suppose A and B are compatible delay-restricted probabilistic I/O automata

and � = e

0

e

1

: : : e

m�1

is an external trace. Then

E

AjB

�

[g(D

AjB

;N

AjB

)] = E

B

�

[E

A

�

[g(D

A

+D

B

;N

A

+N

B

) � h((D

A

;N

A

); (D

B

;N

B

))]];

where

h((D

A

;N

A

); (D

B

;N

B

)) =

m�1

Y

k=0

N

A

k

+N

B

k

N

A

k

!

� (

D

A

k

D

A

k

+D

B

k

)

N

A

k

� (

D

B

k

D

A

k

+D

B

k

)

N

B

k

!

0

B

@

Y

k2K

out

A

D

A

k

D

A

k

+D

B

k

1

C

A

0

B

@

Y

k2K

out

B

D

B

k

D

A

k

+D

B

k

1

C

A

and

K

out

A

= fk : 0 � k < m; e

k

2 E

out

A

g K

out

B

= fk : 0 � k < m; e

k

2 E

out

B

g

Proof { By de�nition,

E

AjB

�

[g(D

AjB

;N

AjB

)] =

X

(d;n)

g(d;n)p

AjB

�

(d;n);

in which the quantity p

AjB

�

(d;n) is given by the following:

p

AjB

�

(d;n) =

X

�

m�1

Y

k=0

0

@

n

k

�1

Y

i=0

�

AjB

(�(k; i)

�

k;i

�!�(k; i+ 1))

1

A

� �

AjB

(�(k; n

k

); e

k

; �(k + 1; 0));

where the summation is taken over all executions � in Ext

AjB

�

having delay sequence (d;n).

By Proposition 2.1, the executions � in Ext

AjB

�

having delay sequence (d;n) are in

bijective correspondence with pairs (�

A

; �

B

), where �

A

is an execution of A having external

trace � and delay sequence (d

A

;n), �

B

is an execution of B having external trace � and

delay sequence (d

B

;n), such that d = d

A

+ d

B

. However, �

A

is not necessarily in Ext

A

�

since some of the internal actions in �

A

are from B. More precisely, suppose

� = �(0; 0)

�

n

0

====)

�(0; n

0

)

e

0

�!�(1; 0)

�

n

1

====)

� � �

�

n

m�1

======)

�(m� 1; n

m�1

)

e

m�1

�!�(m; 0)

is an execution in Ext

AjB

�

with delay sequence (d;n). By Proposition 2.1, projecting � onto

A gives execution

�

A

= �

A

(0; 0)

�

n

0

====)

�

A

(0; n

0

)

e

0

�!�

A

(1; 0)

�

n

1

====)

� � �

� � �

�

n

m�1

======)

�

A

(m� 1; n

m�1

)

e

m�1

�!�

A

(m; 0)

with delay sequences (d

A

;n). But since all the n

k

internal steps in � are from either A or

B, some of the internal steps in �

A

are from B. By convention q

e

�!q and �

A

(q; e; q) = 1

if e 62 E

A

, we can remove those internal transitions generated by B from �

A

and have

�

0

A

= �

A

(0; 0)

�

n

A

0

====)

�

A

(0; n

A

0

)

e

0

�!�

A

(1; 0)

�

n

A

1

====)

� � �

� � �

�

n

A

m�1

======)

�

A

(m� 1; n

A

m�1

)

e

m�1

�!�

A

(m; 0)

29

Now, �

0

A

is in Ext

A

�

since it contains internal actions in A only. Similarly, we can remove

the internal steps generated by A from �

B

and have an execution �

0

B

that is in Ext

B

�

. Thus,

for a given external trace � = e

0

e

1

� � � e

m�1

, choosing an execution � 2 Ext

AjB

�

with delay

sequence (d;n) amounts to choosing a pair (�

A

; �

B

), where �

A

2 Ext

A

�

has delay sequence

(d

A

;n

A

), �

B

2 Ext

B

�

has delay sequence (d

B

;n

B

), such that d

A

+d

B

= d and n

A

+n

B

= n,

and for 0 � k < m, choosing a particular interleaving of the n

A

k

internal actions of A and

the n

B

k

internal actions of B. For a �xed choice of (�

A

; �

B

), the total number of such

interleaving is given by:

m�1

Y

k=0

n

A

k

+ n

B

k

n

A

k

!

:

Then by the de�nition of composition for probabilistic I/O automata, we have

p

AjB

�

(d;n)

=

X

�

m�1

Y

k=0

0

@

n

k

�1

Y

i=0

�

AjB

(�(k; i)

�

k;i

�!�(k; i+ 1))

1

A

� �

AjB

(�(k; n

k

); e

k

; �(k + 1; 0))

=

X

�

A

X

�

B

m�1

Y

k=0

n

A

k

+ n

B

k

n

A

k

!

� (

d

A

k

d

A

k

+ d

B

k

)

n

A

k

� (

d

B

k

d

A

k

+ d

B

k

)

n

B

k

� (

�

k

d

A

k

+ d

B

k

)

!

�

0

@

m�1

Y

k=0

0

@

n

A

k

�1

Y

i=0

�

A

(�

A

(k; i)

�

k;i

�!�

A

(k; i+ 1))

1

A

� �

A

(�

A

(k; n

A

k

); e

k

; �

A

(k + 1; 0))

1

A

�

0

@

m�1

Y

k=0

0

@

n

B

k

�1

Y

i=0

�

B

(�

B

(k; i)

�

k;i

�!�

B

(k; i+ 1))

1

A

� �

B

(�

B

(k; n

B

k

); e

k

; �

B

(k + 1; 0))

1

A

where

�

k

=

8

>

<

>

:

d

A

k

if e

k

2 E

out

A

d

B

k

if e

k

2 E

out

B

d

A

k

+ d

B

k

otherwise,

�, �

A

, and �

B

range over Ext

AjB

�

, Ext

A

�

, and Ext

B

�

, respectively, (d

A

;n

A

) denotes the delay

sequence of �

A

, and (d

B

;n

B

) denotes the delay sequence of �

B

.

Substituting the above into the de�nition of E

AjB

�

and rearranging terms gives

E

AjB

�

[g(D

AjB

;N

AjB

)]

=

X

(d;n)

g(d;n)p

AjB

�

(d;n)

=

X

(d

B

;n

B

)

X

(d

A

;n

A

)

g(d

A

+ d

B

;n

A

+ n

B

)

0

B

@

m�1

Y

k2K

out

A

d

A

k

d

A

k

+ d

B

k

1

C

A

0

B

@

m�1

Y

k2K

out

B

d

B

k

d

A

k

+ d

B

k

1

C

A

�

m�1

Y

k=0

n

A

k

+ n

B

k

n

A

k

!

� (

d

A

k

d

A

k

+ d

B

k

)

n

A

k

� (

d

B

k

d

A

k

+ d

B

k

)

n

B

k

!

30

�

0

@

X

�

A

m�1

Y

k=0

0

@

n

A

k

�1

Y

i=0

�

A

(�

A

(k; i)

�

k;i

�!�

A

(k; i+ 1))

1

A

� �

A

(�

A

(k; n

A

k

); e

k

; �

A

(k + 1; 0))

1

A

�

0

@

X

�

B

m�1

Y

k=0

0

@

n

B

k

�1

Y

i=0

�

B

(�

B

(k; i)

�

k;i

�!�

B

(k; i+ 1))

1

A

� �

B

(�

B

(k; n

B

k

); e

k

; �

B

(k + 1; 0))

1

A

or more simply,

X

(d

B

;n

B

)

X

(d

A

;n

A

)

g(d

A

+ d

B

;n

A

+ n

B

) � h((d

A

;n

A

); (d

B

;n

B

)) � p

A

�

(d

A

;n

A

) � p

B

�

(d

B

;n

B

):

But this is easily recognized as

E

B

�

[E

A

�

[g(D

A

+D

B

;N

A

+N

B

) � h((D

A

;N

A

); (D

B

;N

B

))]];

as was to be shown.

Observe that Theorem 3 directly generalizes Theorem 1. If we apply Theorem 3 to

probabilistic I/O automata without internal actions, then

h((D

A

;N

A

); (D

B

;N

B

)) =

m�1

Y

k=0

N

A

k

+N

B

k

N

A

k

!

� (

D

A

k

D

A

k

+D

B

k

)

N

A

k

� (

D

B

k

D

A

k

+D

B

k

)

N

B

k

!

0

B

@

Y

k2K

out

A

D

A

k

D

A

k

+D

B

k

1

C

A

0

B

@

Y

k2K

out

B

D

B

k

D

A

k

+D

B

k

1

C

A

=

0

B

@

Y

k2K

out

A

D

A

k

D

A

k

+D

B

k

1

C

A

0

B

@

Y

k2K

out

B

D

B

k

D

A

k

+D

B

k

1

C

A

;

where the last equality holds because there are no internal actions between external actions

and, as a result, the �rst product (of arity m) equals 1. By eliding the variables N

A

and

N

B

, which have constant value zero in case there are no internal actions, we arrive at the

same equation for E

AjB

�

as in Section 4.

6.2 Testing Equivalence and Full Abstraction with Internal Ac-

tions

In this section we show that probabilistic behavior maps for delay-restricted probabilistic

I/O automata are fully abstract with respect to the notion of probabilistic testing equiva-

lence given in Section 5. We restate the lemmas and theorem of Section 5, with appropriate

modi�cations, and give new proofs as required.

Recall that a test is simply a probabilistic I/O automaton T that has a distinguished

output action !.

31

Lemma 6.1 Suppose T is a closed test. Then the set of all successful native executions of

T is measurable. The probability of this set is given by the formula

X

�2

�

E

T

�!

[1];

where

�

 is the set of all external traces that do not contain !.

Proof { The success probability of T is the probability of the set of all native executions

of T that contain an occurrence of !. This set can be represented as a countable union of

sets of the form [�], where � ranges over all �nite native executions

� = �(0; 0)

�

n

0

=)�(0; n

0

)

e

0

�!�(1; 0)

�

n

1

=)� � �

�

n

m�1

=) �(m� 1; n

m�1

)

e

m�1

�!�(m; 0)

�

n

m

=)�(m;n

m

)

!

�!�(m+ 1; 0);

in which n

k

(� 0) number of internal steps occur before each external action e

k

, 0 � k < m,

and ! appears for the �rst time as the last action. Let e

m

= !, then the probability of

each set [�] is given by

Pr([�]) =

m

Y

k=0

0

@

n

k

�1

Y

i=0

�

T

(�(k; i)

�

k;i

�!�(k; i+ 1))

1

A

� �

T

(�(k; n

k

); e

k

; �(k + 1; 0)):

Thus, the success probability of T can be expressed as

X

�2

�

X

�2Ext

T

�!

m

Y

k=0

0

@

n

k

�1

Y

i=0

�

T

(�(k; i)

�

k;i

�!�(k; i+ 1))

1

A

� �

T

(�(k; n

k

); e

k

; �(k + 1; 0)):

The above equation is just

X

�2

�

E

T

�!

[1];

as was to be shown.

Let a set of actions E = E

0

[E

1

be �xed, with E

0

and E

1

disjoint. For each external

trace � = e

0

e

1

� � � e

m�1

and each sequence x = x

0

x

1

� � �x

m�1

of positive real numbers, test

T

�;x

is de�ned as in Section 5.

Lemma 6.2 Suppose A is a delay-restricted probabilistic I/O automaton. Then for each

external trace � = e

0

e

1

: : : e

m�1

2 (E

ext

A

)

�

, and for each sequence x = x

0

; x

1

; : : : ; x

m

of

positive real numbers, the test T

�;x

(with E

0

= E

in

A

and E

1

= E

out

A

) is a proper test for A.

Moreover, the success probability of AjT

�;x

is given by:

2

�c

� E

A

�!

[

m

Y

k=0

y

k

� (D

A

k

)

N

A

k

(x

k

+D

A

k

)

N

A

k

+1

];

32

where for all 0 � k < m we have

y

k

=

(

D

A

k

; if e

k

2 E

out

A

x

k

otherwise;

y

m

= x

m

, and c is the number of k 2 f0; 1; : : : ; m� 1g for which e

k

2 E

in

A

.

Proof { Fix � and x, and let T abbreviate T

�;x

. The proof that T is a proper test for A

is the same as in Lemma 5.2.

By Lemma 6.1, the success probability of AjT is given by:

X

�

0

2

�

E

AjT

�

0

!

[1];

where

�

 is the set of all traces that do not contain !. By Theorem 3, this may be rewritten

as follows:

X

�

0

2

�

E

A

�

0

!

[E

T

�

0

!

[h((D

A

;N

A

); (D

T

;N

T

))]];

where

h((D

A

;N

A

); (D

T

;N

T

)) =

m

Y

k=0

N

A

k

+N

T

k

N

A

k

!

(

D

A

k

D

A

k

+D

T

k

)

N

A

k

(

D

T

k

D

A

k

+D

T

k

)

N

T

k

!

0

B

@

Y

k2K

out

A

D

A

k

D

A

k

+D

T

k

1

C

A

0

B

@

Y

k2K

out

T

D

T

k

D

A

k

+D

T

k

1

C

A

and index sets K

out

A

and K

out

T

contain the indices of actions in �

0

! that are output actions

of A and T respectively.

Now, observe that T has just one execution that produces a trace of the form �

0

!,

namely

� = 0

e

0

�!1

e

1

�!2

e

2

�! : : :

e

m�1

�!m

!

�!m+ 1;

which produces trace �!. From this it is easy to see that E

T

�

0

!

[h((D

A

;N

A

); (D

T

;N

T

))] = 0

unless �

0

= �, and since the delay sequence of � is x

0

x

1

� � �x

m

, we have

E

T

�!

[h((D

A

;N

A

); (D

T

;N

T

))] = 2

�c

m

Y

k=0

(

D

A

k

D

A

k

+ x

k

)

N

A

k

!

0

B

@

Y

k2K

out

A

D

A

k

D

A

k

+ x

k

1

C

A

0

B

@

Y

k2K

out

T

x

k

D

A

k

+ x

k

1

C

A

where c is the number of k 2 f0; 1; : : : ; m� 1g such that e

k

2 E

in

A

. Using this information

and the fact that each e

k

is an output action of either A or T , the success probability of

AjT may be rewritten as:

2

�c

� E

A

�!

[

m

Y

k=0

y

k

� (D

A

k

)

N

A

k

(x

k

+D

A

k

)

N

A

k

+1

];

33

where for all 0 � k < m we have

y

k

=

(

D

A

k

; if e

k

2 E

out

A

x

k

otherwise;

and y

m

= x

m

.

Theorem 4 Suppose A and B are delay-restricted probabilistic I/O automata with the

same set of actions. Then A and B are testing equivalent if and only if the associated

probabilistic behavior maps E

A

and E

B

are equal.

Proof Sketch { The proof is similar to that of Theorem 2, using Theorem 3 and Lemma 6.2

instead of Theorem 1 and Lemma 5.2. Also, Lemma 5.3 is applied to rational functions

with nonlinear denominators; in the proof of Theorem 2, Lemma 5.3 was applied to rational

functions with linear denominators.

7 Summary and Conclusion

We have presented a framework in which probability can be added to I/O automata. To

capture the asymmetric treatment of input and output indigenous to I/O automata, a

separate distribution is associated with each input action, in the reactive style, and a

single distribution is associated with all locally controlled actions, in the generative style.

No relative probabilities are de�ned among di�erent input actions nor between input and

locally controlled actions. Moreover, the pleasant notion of I/O automaton asynchronous

composition is retained, in part, through the introduction of state delay parameters. Delay

parameters admit a natural probabilistic description of the outcome of the competition

between automata vying for control of the next action.

As is the practice with ordinary I/O automata, we introduced a more abstract rep-

resentation, probabilistic behavior maps, for the external behaviors of certain classes of

probabilistic I/O automata. This representation maps �nite action sequences to a set of

expectation functionals which give information not only about the probabilities of action

sequences but also delay sequences. This latter information is essential for achieving com-

positionality. We also showed that probabilistic behavior maps are fully abstract with

respect to a natural notion of probabilistic testing.

As future work, we would like to extend the entire setup to handle time as well as

probability. The presence of the state delay function in our model provides a convenient

mechanism on which to base this work. Another interesting research direction concerns

simulation relations for probabilistic I/O automata, in the style of [LT87, LV91, SL94].

To conclude, we would like to comment on the issue of whether the model we have

de�ned is \realistic" in the sense that it could be used in the design and analysis of actual

systems. One might question, for example, our assumption that component automata

experience independent delays. However, this assumption re
ects our view of a concurrent

34

system as a collection of autonomous component automata, each of which executes its

locally controlled actions without interference from another component.

Another potential source of objection to the model might be the assumption, underlying

the de�nition of composition, that the delay time in a state is exponentially distributed.

However, we would argue as follows: there are at least two distinct reasons for de�ning a

model of probabilistic systems like the one we have studied here. First, one might construct

the model such that it accurately models a pre-existing class of systems. Certainly in this

case one should be very concerned about whether the assumption of exponential delays is

reasonable. However, a second reason for constructing a model would be as a theoretical tool

with which to design and build real systems. In this case, one is not concerned with whether

the model describes a pre-existing class of systems, but rather with whether systems can

be engineered whose behavior closely matches that predicted by the model. Clearly, it

would be possible, by introducing exponentially distributed random delays between each

step of a program, to simulate arbitrarily closely the type of probabilistic behavior modeled

by our probabilistic I/O automata. The price paid for a close match between the actual

behavior of a system implemented in this way and the theoretical behavior predicted by

the model would be a slowdown in performance introduced by the delays. In return for this

loss of performance, however, one would receive the ability to make quantitative statements

about the probability of various kinds of system behavior. Having this ability is important

to many applications.

Acknowledgment: We thank the anonymous referees for their helpful comments.

References

[Chr90] I. Christo�. Testing equivalences and fully abstract models for probabilistic

processes. In J. C. M. Baeten and J. W. Klop, editors, Proceedings of CON-

CUR '90 { First International Conference on Concurrency Theory, Lecture

Notes in Computer Science, Volume 458, pages 126{140. Springer-Verlag, 1990.

[CSZ92] R. Cleaveland, S. A. Smolka, and A. E. Zwarico. Testing preorders for proba-

bilistic processes. In Proceedings of the 19th ICALP, July 1992.

[dNH83] R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes. The-

oretical Computer Science, 34:83{133, 1983.

[GHR92] N. G�otz, U. Herzog, and M. Rettlebach. TIPP | a language for timed processes

and performance evaluation. Technical Report 4/92, University of Erlangen-

N�urnberg, Germany, November 1992.

[Han91] H. A. Hansson. Time and Probability in Formal Design of Distributed Systems.

PhD thesis, Department of Computer Systems, Uppsala University, 1991.

[Hen88] M. C. B. Hennessy. Algebraic Theory of Processes. MIT Press, Boston, Mass.,

1988.

35

[Hil93] J. Hillston. PEPA: Performance enhanced process algebra. Technical Report

CSR-24-93, Department of Computer Science, University of Edinburgh, Edin-

burgh, Great Britain, March 1993.

[HJ90] H. A. Hansson and B. Jonsson. A calculus for communicating systems with time

and probabilities. In Proceedings of the 11th IEEE Symposium on Real-Time

Systems, 1990.

[JL91] B. Jonsson and K. G. Larsen. Speci�cation and re�nement of probabilistic

processes. In Proceedings of the 6th IEEE Symposium on Logic in Computer

Science, Amsterdam, July 1991.

[Lan90] S. Lang. Undergraduate Algebra. Springer-Verlag, New York, 1990.

[LS92] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Infor-

mation and Computation, 94(1):1{28, September 1992. Preliminary versions

of this paper appeared as University of Aalborg technical reports R 88-18 and

R 88-29, and in Proceedings of the 16th Annual ACM Symposium on Principles

of Programming Languages, Austin, Texas, 1989.

[LT87] N. A. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed

algorithms. In Proceedings of the 6th Annual ACM Symposium on Principles

of Distributed Computing, 1987.

[LV91] N. A. Lynch and F. W. Vaandrager. Forward and backward simulations for

timing-based systems. In Proceedings of the REX Workshop \Real-Time: The-

ory in Practice", Lecture Notes in Computer Science, Volume 600, pages 397{

446. Springer-Verlag, 1991.

[Mil89] R. Milner. Communication and Concurrency. International Series in Computer

Science. Prentice Hall, 1989.

[Mol82] M. K. Molloy. Performance analysis using stochastic Petri nets. IEEE Trans.

Comput., C-31(9), September 1982.

[Rab63] M. O. Rabin. Probabilistic automata. Information and Control, 6:230{245,

1963.

[Sei92] K. Seidel. Probabilistic CSP. PhD thesis, Technical Monograph PRG-102,

Programming Research Group, Oxford University Computing laboratory, 1992.

[SL94] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.

In B. Jonsson and J. Parrow, editors, Proceedings of CONCUR '94 { Fifth

International Conference on Concurrency Theory, Lecture Notes in Computer

Science, Volume 836, pages 481{496. Springer-Verlag, 1994.

36

[Tri82] K. S. Trivedi. Probability & Statistics with Reliability, Queuing, and Computer

Science Applications. Prentice Hall, Englewood Cli�s, New Jersey, 1982.

[Tut87] M. Tuttle. Hierarchical correctness proofs for distributed algorithms. Master's

thesis, MIT, April 1987.

[vGSST90] R. J. van Glabbeek, S. A. Smolka, B. Ste�en, and C. M. N. Tofts. Reactive, gen-

erative, and strati�ed models of probabilistic processes. In Proceedings of the

5th IEEE Symposium on Logic in Computer Science, pages 130{141, Philadel-

phia, PA, 1990. Extended version to appear in Information and Computation.

[Wei74] A. J. Weir. General Integration and Measure. Cambridge University Press,

1974.

[YCDS94] S. Yuen, R. Cleaveland, Z. Dayar, and S. A. Smolka. Fully abstract charac-

terizations of testing preorders for probabilistic processes. In B. Jonsson and

J. Parrow, editors, Proceedings of CONCUR '94 { Fifth International Confer-

ence on Concurrency Theory, Lecture Notes in Computer Science, Volume 836,

pages 497{512. Springer-Verlag, 1994.

Appendix

A Proof of Lemma 5.3

Lemma A.1 is a uniqueness theorem for partial fraction expansions of rational functions.

It is used in the proof of Lemma 5.3.

Lemma A.1 Suppose f and f

0

are two rational functions of variable x de�ned as follows:

f =

X

i2I

a

i

(x+ b

i

)

r

i

f

0

=

X

i2I

0

c

i

(x + d

i

)

s

i

;

where I and I

0

are �nite sets, for each i 2 I, the exponent r

i

is a positive integer and

a

i

2 (0;1), for each i 2 I

0

, the exponent s

i

is a positive integer and c

i

2 (0;1), for each

distinct i; j 2 I the pairs (b

i

; r

i

) and (b

j

; r

j

) are distinct, and for each distinct i; j 2 I

0

the

pairs (d

i

; s

i

) and (d

j

; s

j

) are distinct. If f = f

0

, then there exists a bijection (-)

0

: I ! I

0

such that a

i

= c

i

0

, b

i

= d

i

0

and r

i

= s

i

0

for all i 2 I.

Proof { The equivalence relation � on I, de�ned by i � j i� b

i

= b

j

, induces a partition

of I. Let I

1

; I

2

; � � � ; I

m

denote the equivalence classes. Let b

l

denote the common value of

b

i

for i 2 I

l

and let r

l

=

P

i2I

l

r

i

denote the sum of all r

i

for i 2 I

l

. We may then write

f =

m

X

l=1

g

l

(x+ b

l

)

r

l

where g

l

=

X

i2I

l

a

i

(x + b

l

)

(r

l

�r

i

)

:

37

Similarly, we may write

f

0

=

m

0

X

l=1

g

0

l

(x+ d

l

)

s

l

where g

0

l

=

X

i2I

0

l

c

i

(x + d

l

)

(s

l

�s

i

)

:

Since by construction, the b

l

are all distinct for 1 � l � m and g

l

is a polynomial of degree

less than r

l

, similar for d

l

and g

0

l

for 1 � l � m

0

, the above expressions amount to partial

fraction expansions of f and f

0

. If f = f

0

, then by the uniqueness of partial fraction

expansions [Lan90], we conclude that m = m

0

, and by choosing appropriately the order of

the terms in the summations we may assume that b

l

= d

l

and the polynomials g

l

and g

0

l

are equal for 1 � l � m. Now,

g

l

=

X

i2I

l

a

i

(x + b

l

)

(r

l

�r

i

)

and g

0

l

=

X

i2I

0

l

c

i

(x+ d

l

)

(s

l

�s

i

)

where I

l

and I

0

l

are �nite sets, a

i

2 (0;1) for i 2 I

l

, c

i

2 (0;1) for i 2 I

0

l

, for each distinct

i; j 2 I

l

we have r

i

6= r

j

, and for each distinct i; j 2 I

0

l

we have s

i

6= s

j

. The polynomials

g

l

and g

0

l

may thus be regarded as polynomials in the quantity y = x + b

l

(= x + d

l

), with

positive coe�cients a

i

and c

i

, and with each term having a distinct exponent applied to y.

Since g

l

and g

0

l

are equal, we may conclude the equality of the coe�cients of corresponding

terms; thus, there exists a bijection (-)

0

: I

l

! I

0

l

such that a

i

= c

i

0

and r

i

= s

i

0

for all

i 2 I

l

.

Taking the union of the bijections (-)

0

: I

l

! I

0

l

for 1 � l � m, yields the required

bijection (-)

0

: I ! I

0

, completing the proof.

Lemma 5.3 Suppose f and f

0

are two rational functions of variables x

0

; x

1

; : : : ; x

n�1

(n �

0), de�ned as follows:

f =

X

i2I

a

i

Q

n�1

k=0

(x

k

+ b

i;k

)

r

i;k

f

0

=

X

i2I

0

c

i

Q

n�1

k=0

(x

k

+ d

i;k

)

s

i;k

;

where I and I

0

are �nite sets, for each i 2 I and 0 � k < n, the exponent r

i;k

is a positive

integer and a

i

2 (0;1), for each i 2 I

0

and 0 � k < n, the exponent s

i;k

is a positive

integer and c

i

2 (0;1), for each distinct i; j 2 I the sets f(k; b

i;k

; r

i;k

) : 0 � k < ng and

f(k; b

j;k

; r

j;k

) : 0 � k < ng are distinct, and for each distinct i; j 2 I

0

the sets f(k; d

i;k

; s

i;k

) :

0 � k < ng and f(k; d

j;k

; s

j;k

) : 0 � k < ng are distinct. If f = f

0

, then there exists a

bijection (-)

0

: I ! I

0

such that a

i

= c

i

0

, b

i;k

= d

i

0

;k

and r

i;k

= s

i

0

;k

for all i 2 I and

0 � k < n.

Proof { The proof proceeds by induction on n. In case n = 0, then the sets f(k; b

i;k

; r

i;k

) :

0 � k < ng are empty for all i 2 I. In view of the assumption that the distinctness of i; j 2 I

implies the distinctness of the sets f(k; b

i;k

; r

i;k

) : 0 � k < ng and f(k; b

j;k

; r

j;k

) : 0 � k < ng,

it follows that I can contain at most one element. Similar reasoning shows that I

0

also

38

contains at most one element. If I = ;, then f = 0, so if f

0

= f , then we must have I

0

= ;

as well. In this case the trivial bijection from I to I

0

has the required properties. Suppose

I has exactly one element �. Then f = a

�

, so if f

0

= f we know that I

0

also has exactly one

element �

0

and f

0

= c

�

0

. In this case, we may take as our bijection the map (-)

0

: I ! I

0

that takes � to �

0

.

Now suppose the result has been shown for n, and consider the situation for n+ 1. We

may write

f =

X

i2I

g

i

(x

n

+ b

i;n

)

r

i;n

;

where

g

i

=

a

i

Q

n�1

k=0

(x

k

+ b

i;k

)

r

i;k

:

The equivalence relation � on I, de�ned by i � j i� (b

i;n

; r

i;n

) = (b

j;n

; r

j;n

), induces a

partition of I. Let I

1

; I

2

; : : : ; I

m

denote the equivalence classes, and let b

l

; r

l

denote the

the common values of b

i;n

; r

i;n

for i 2 I

l

. We may then write

f =

m

X

l=1

P

i2I

l

g

i

(x

n

+ b

l

)

r

l

:

Similarly, we may write

f

0

=

m

0

X

l=1

P

i2I

0

l

g

0

i

(x

n

+ d

l

)

s

l

:

Since by construction, the pairs (b

l

; r

l

) are all distinct for 1 � l � m, and the pairs (d

l

; s

l

)

are all distinct for 1 � l � m

0

, the above expressions amount to the rational functions in

Lemma A.1, viewed as rational functions of x

n

with x

1

; : : : ; x

n�1

held constant. If f = f

0

,

then by Lemma A.1, we conclude that m = m

0

, and by choosing appropriately the order of

the terms in the summations we may assume that b

l

= d

l

; r

l

= s

l

for 1 � l � m, and the

rational functions g

l

=

P

i2I

l

g

i

and g

0

l

=

P

i2I

0

l

g

0

i

are equal for 1 � l � m.

Now,

g

l

=

X

i2I

l

a

i

Q

n�1

k=0

(x

k

+ b

i;k

)

r

i;k

and g

0

l

=

X

i2I

0

l

c

i

Q

n�1

k=0

(x

k

+ d

i;k

)

s

i;k

;

where I

l

and I

0

l

are �nite sets, a

i

2 (0;1) for i 2 I

l

, and c

i

2 (0;1) for i 2 I

0

l

. Moreover, by

the assumption that the sets f(k; b

i;k

; r

i;k

) : 0 � k < n+1g and f(k; b

j;k

; r

j;k

) : 0 � k < n+1g

are distinct for i; j 2 I and the fact that (b

i;n

; r

i;n

) = (b

j;n

; r

j;n

) for i; j 2 I

l

, we may

conclude that the sets f(k; b

i;k

; r

i;k

) : 0 � k < ng and f(k; b

j;k

; r

j;k

) : 0 � k < ng are

distinct for i; j 2 I

l

. Similar reasoning shows that the sets f(k; d

i;k

; s

i;k

) : 0 � k < ng and

f(k; d

j;k

; s

j;k

) : 0 � k < ng are distinct for i; j 2 I

0

l

. Thus, for each l, we may apply the

induction hypothesis to g

l

and g

0

l

, to conclude the existence of a bijection (-)

0

: I

l

! I

0

l

such that a

i

= c

i

0

and b

i;k

= d

i

0

;k

for all i 2 I and all 0 � k < n.

Taking the union of the bijections (-)

0

: I

l

! I

0

l

, for 1 � l � m, yields the required

bijection (-)

0

: I ! I

0

, completing the induction step and the proof.

39

