
Computations, Residuals, and the Power of

Indeterminacy

Prakash Panangaden

�

Department of Computer Science

Cornell University

Ithaca, NY 14853 USA

Eugene W. Stark

y

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794 USA

Abstract

We investigate the power of Kahn-style dataow networks, with processes that

may exhibit indeterminate behavior. Our main result is a theorem about networks of

\monotone" processes, which shows: (1) that the input/output relation of such a net-

work is a total and monotone relation; and (2) every relation that is total, monotone,

and continuous in a certain sense, is the input/output relation of such a network. Now,

the class of monotone networks includes networks that compute arbitrary continuous

input/output functions, an \angelic merge" network, and an \in�nity-fair merge" net-

work that exhibits countably indeterminate branching. Since the \fair merge" relation

is neither monotone nor continuous, a corollary of our main result is the impossibil-

ity of implementing fair merge in terms of continuous functions, angelic merge, and

in�nity-fair merge.

Our results are established by applying the powerful technique of \residuals" to the

computations of a network. Residuals, which have previously been used to investigate

optimal reduction strategies for the �-calculus, have recently been demonstrated by one

of the authors (Stark) also to be of use in reasoning about concurrent systems. Here,

we de�ne the general notion of a \residual operation" on an automaton, and show how

residual operations de�ned on the components of a network induce a certain preorder

<

�

on the set of computations of the network. For networks of \monotone port automata,"

we show that the \fair" computations coincide with

<

�

-maximal computations. Our

results follow from this extremely convenient property.

1 Introduction

We are concerned with networks of communicating processes, like those considered by Kahn

[16, 17], but in which processes are allowed to have indeterminate behavior. Thus, we view a

�

Research supported in part by NSF Grant DCR-8602072.

y

Research supported in part by NSF Grant CCR-8702247.

1



network as a graph, whose vertices are processes, and whose arcs are FIFO communication

channels. The processes communicate with each other by passing messages, which contain

data values, along the arcs. We classify processes by the types of branching they may contain

in their program. Unrestricted processes may contain arbitrary branching, including both the

ability to make indeterminate internal choices between a countable number of computation

paths (so-called \countable indeterminacy" or \countable nondeterminism"[2, 3, 4, 5]), and

the ability to test for the presence and absence of input data. Monotone processes may

make arbitrary internal choices, and although they may branch based on input data that

has already arrived, they may not contain tests for the absence of input data. This restriction

means that the behavior of monotone processes is completely independent of the times at

which inputs arrive during computation.

An interesting class of processes with indeterminate behavior are the so-called merge

processes. A fair merge process combines sequences of values arriving on two input channels

into a single sequence, in such a way that the output sequence produced in any complete

computation is always a fair shu�e of the two input sequences. The angelic merge and

in�nity-fair merge processes [23] perform a function similar to that of the fair merge, but

do not necessarily transmit all values that arrive on both inputs. Instead, they both satisfy

the basic requirement that the output sequence should be a fair shu�e of pre�xes (possibly

all) of the input sequences. In addition to this basic requirement, an angelic merge process

guarantees that if the sequence arriving on one input is �nite, then it will transmit the

entire sequence of values that arrives on the other input. An angelic merge process therefore

never gets \stuck" waiting for input that might never arrive. An in�nity-fair merge process

supplements the basic requirement with the guarantee that if the sequence arriving on one

input is in�nite, then it will transmit the entire sequence of values that arrive on the other

input.

It is well known that the presence of fairness implies the ability to make countably

indeterminate choices (see, for example, [3] or [24]), and it is easy to demonstrate this

using K�onig's Lemma arguments. The converse, whether fairness can be programmed if

one has a primitive for countably indeterminate choice, is not so clear. It is not di�cult

to program in�nity-fair merge with such a primitive [3]. In the case of nondeterministic

recursive programs, which are closely related to the dataow networks considered here, it is

known that with McCarthy's amb primitive [10] one can produce countable branching and

also angelic merge, but it has not been shown that one can program a fair merge with amb

[1]. In this paper, we show that countable indeterminacy alone is not su�cient for fairness;

it is also necessary to branch based on the availability of input data. More precisely, we

show that networks of monotone processes can compute arbitrary continuous input/output

functions, angelic merge, and in�nity-fair merge (which requires countably indeterminate

branching), but that no such network can implement fair merge.

We should emphasize that our results concern the implementability of relations by a

certain class of mechanisms; they are not directly concerned with the de�nability of relations

in terms of other relations. Indeed, a satisfactory abstract theory of de�nability of relations

by nondeterministic recursive programs is not available at present, except in the special case

2



that the underlying value domains are at. However, if one accepts the premise that any

such abstract theory ought to give results consistent with the operational model used here,

then our results can be interpreted as saying something indirectly about de�nability.

Our results, concerning the relative power of merging primitives, are a byproduct of a

more general study of networks of \dataow-like" processes with indeterminate behavior.

Our main tool in this study is a formalism developed in [25]. We de�ne three classes of

automata, starting with a very general, abstract class, and becoming successively more

specialized and concrete. The �rst class, called simply automata, is essentially the same as

the \labeled transition systems" that have been used in the study of CCS and CSP (e.g. in

[8, 9, 13, 21]). Computations of such automata consist of sequences of \transitions," each

of which is labeled with a symbol, called an \event." Next, we de�ne port automata, which

represent processes that receive data values from other processes through \input ports," and

send data values to other processes through \output ports." Port automata are a special case

of the \input/output automata" de�ned by Lynch and Tuttle [20], and the \I/O-systems"

of Jonsson [15]. By imposing on port automata a condition stating that enabled output

transitions cannot be disabled by the arrival of input, we obtain the class of monotone port

automata. We shall see that monotone port automata are an extremely well-behaved class of

indeterminate processes. Essentially the same class of automata was de�ned in a somewhat

more abstract setting in [25], but was not thoroughly investigated there.

After de�ning the various kinds of automata, we show how to \compose" a collection of

component automata into a network automaton, which represents a system of concurrently

executing processes in which communication and synchronization takes place through shared

events. Although the composition of an arbitrary collection of automata always results in an

automaton, the same is not true for port automata. We therefore de�ne a \compatibility"

condition on collections of port automata, such that the composition of a compatible collec-

tion of port automata always results in a port automaton. Our notion of compatibility, and

our de�nition of composition of port automata are special cases of the corresponding notions

de�ned by Lynch and Tuttle [20] for input/output automata. Having de�ned the notion

of a network of port automata, we de�ne the \fair computations" and the \input/output

relations" of such networks. We also de�ne when a network \implements" a relation.

The heart of the paper is the de�nition of a residual operation on an automaton. A

residual operation is a partial binary operation " on the set of transitions of an automaton,

subject to a few simple axioms. Such an operation serves, in essence, to point out which

pairs of transitions from a state are \concurrent," and to show how concurrent transitions

\commute." Naturally associated with each class of automata is a corresponding kind of

residual operation, whose de�nition exploits the particular commutativity properties of that

class. We show how a residual operation on an automaton induces a preorder

<

�

, extending

the usual pre�x relation, on the set of its computations. The main result of this section shows

that the set of equivalence classes of computations of an automaton, under the induced partial

order, is an algebraic cpo whose �nite elements are exactly the equivalence classes of �nite

computations.

We then use residuals as a tool to investigate the properties of networks of monotone

3



port automata. For such networks, we show that the fair computations are exactly the

computations that are

<

�

-maximal among all computations with the same input history. A

corollary of this result states that every computation

<

�

-extends to a fair computation with

the same input history. We apply these results to show that the input/output relations of

networks of monotone automata are total and monotone relations. Conversely, every relation

that is total, monotone, and continuous in a suitable sense is the input/output relation of a

network of monotone port automata.

Residuals have been used previously in the investigation of optimal reduction strategies

for the �-calculus [6, 19] and term-rewriting systems [7, 14]. In that work, residuals are used

to keep track of what happens to one redex in a term while others are contracted. Our use is

entirely analogous|a residual operation lets us keep track of what happens to one transition

while other transitions are executed concurrently. The use of residuals in reasoning about

concurrent systems was demonstrated in [25].

Before proceeding with the presentation of our results, we comment on notation. In this

paper, all sets whose cardinality is left unspeci�ed are assumed to be at most countable. If

V is a set, then V

�

and V

1

denote, respectively, the of all �nite sequences from V , and the

set of all �nite and in�nite sequences from V . The set V

�

is a monoid under concatenation,

and a partially ordered set under the pre�x relation �. The set V

1

is a Scott domain

(i.e. an !-algebraic, bounded-complete poset) under the pre�x ordering. If the notation V

U

denotes, as usual, the set of all functions from U to V , then the set (V

�

)

U

inherits the monoid

structure and partial order \argumentwise" from V

�

, and the set (V

1

)

U

similarly inherits

the structure of a domain from V

1

. We use the symbol � to denote the argumentwise

ordering on V

�

and V

1

.

2 Automata

An automaton is a tuple M = (A;Q; q

�

;!), where

� A is a set of events, called the event signature of M .

� Q is a set of states, with q

�

2 Q a distinguished initial state.

� ! is the transition relation, and is a subset of the set Q�(A[f�g)�Q;whose elements

are called transitions. Here � is a special symbol, not in A, called the identity event. If

t = (q; a; r) 2 !, then we write t : q

a

�!r, or q

a

�!r, or just t : q ! r, when the event

a is unimportant. The transition relation of M is required to satisfy:

(Identity) For all states q; r 2 Q, we have (q; �; r) 2 ! i� q = r.

Intuitively, a transition t : q

a

�!r, with a 6= �, represents a step in which M performs

event a in state q, and changes state from q to r. If a = �, then t does not represent a

step of M . Although the condition (Identity) ensures that the presence of such transitions

has no computational signi�cance other than providing a way to \pad" computations, these

transitions will play an indispensible technical role in the sequel.

4



If t : q

a

�!r, then the state q is called the domain of t, and is denoted dom(t). The state

r is called the codomain of t, and is denoted cod(t). We use event (t) to denote the event a

of t. A transition q

�

�!q is called an identity transition, and is denoted by id

q

. Transitions t

and u are called coinitial if dom(t) = dom(u). We say that a set T of transitions is enabled

in state q if there exists a transition t 2 T with dom(t) = q. An event a is enabled in state

q if the set of all transitions for event a is enabled in state q.

A �nite computation for an automaton is a �nite sequence  of transitions in !, of the

form:

q

0

a

1

�!q

1

a

2

�! . . .

a

n

�!q

n

:

The number n is called the length jj of . Similarly, an in�nite computation is an in�nite

sequence of transitions in !:

q

0

a

1

�!q

1

a

2

�! . . . :

We extend notation and terminology for transitions to computations, so that if  is a com-

putation, then the domain dom() of  is the state q

0

, and if  is �nite, then the codomain

cod() of  is the state q

n

. We write  : q ! r to assert that  is a �nite computation with

domain q and codomain r. A computation  is initial if dom() is the distinguished start

state q

�

. The trace of  is the subsequence of a

1

a

2

. . . consisting of the non-identity events

in . If  : q ! r and � : q

0

! r

0

are �nite computations, then  and � are called composable

if q

0

= r, and we de�ne their composition to be the �nite computation � : q ! r

0

, obtained

by concatenating  and � and identifying cod() with dom(�).

2.1 Port Automata

We now de�ne a particular kind of automaton, called a \port automaton," that communicates

by sending \data values" through \ports."

Formally, let V be a �xed set of data values, which we assume to contain at least the set

of natural numbers. A port signature is an event signature A of the form A = A

in

[ A

out

,

where A

in

= X � V , A

out

= Y � V , and X \ Y = ;. The elements of P = X [ Y are

called ports, with the elements of X called input ports and the elements of Y called output

ports. Similarly, the elements of A

in

are called input events and the elements of A

out

are

called output events. If a = (p; v) 2 A, then we write port(a) for the port component p, and

value(a) for the value component v, of a.

A port automaton is an automaton M = (A;Q; q

�

;!), where

� A is a port signature.

� The transition relation of M satis�es:

(Receptivity) For all states q and input events a, there exists a unique state r such

that q

a

�!r.

(Commutativity) For all states q and all input events a and b with port(a) 6= port(b),

if q

a

�!r

b

�!s and q

b

�!r

0

a

�!s

0

, then s = s

0

.

5



Intuitively, an output event a for a port automaton represents the transmission of value

value(a) on output port port(a). An input event a represents the receipt of value value(a)

on input port port(a). The receptivity condition means that a port automaton is always

willing to accept input. The commutativity condition means that a port automaton is

insensitive to the order of arrival of successive inputs at distinct ports.

A port automaton is monotone if it satis�es the additional property:

(Monotonicity) For all states q and r, all input events a, and all output events b, if

q

b

�!r, q

a

�!q

0

, and r

a

�!r

0

, then q

0

b

�!r

0

.

Intuitively, this condition means that output transitions, once enabled, are never disabled

by the arrival of additional input.

For the purposes of this paper, it is convenient to state the receptivity, commutativity,

and monotonicity conditions in the somewhat abstract, but relatively simple form above,

rather than in terms of somewhat messy concrete assumptions about the structure of states.

As a particular concrete model of the axioms, we think of an automaton whose state set is

of the form Q

o

� (V

�

)

X

, where Q

o

is a set of \internal states," and (V

�

)

X

is a set of \input

bu�er states." Although we allow arbitrary changes of state to be associated with output

transitions, the only e�ect allowed for an input transition a = (p; v) is to append the value

v to the end of the input bu�er for port p. It is easy to see that such a model satis�es the

receptivity and commutativity conditions. The monotonicity condition can be satis�ed by

de�ning the automaton in a programming language that contains no primitive for testing

for the emptiness of an input bu�er.

Suppose M is a port automaton, with port set P . De�ne a port history for M to be

an element of the set (V

1

)

P

. Each computation  for M determines a corresponding port

history H



, where for each p 2 P , if a

1

a

2

. . . is the subsequence of those non-identity events

a in  with port(a) = p, then H



(p) is the corresponding sequence value(a

1

)value(a

2

) . . . of

values. The restrictions H

in



and H

out



to the sets of input and output ports, respectively, are

called the input history and output history of .

2.2 Networks of Automata

In this section, we de�ne \network automata," which are systems of communicating, con-

currently executing, component automata. Communication and synchronization between

component automata are performed through shared events. That is, if the event signatures

of two component automata have a nonempty intersection, then a transition of one com-

ponent for an event in the intersection must always occur simultaneously with a transition,

for the same event, of the other component. No restriction is placed on the number of

component automata that may share an event.

Since dataow networks are not usually modeled using shared events, a few remarks are

in order concerning networks of port automata. Communication between components of

a network of port automata occurs when an output transition of one component, with a

particular port and data value, occurs simultaneously with input transitions, with the same

6



port and data value, for a number of other components. To ensure that an event shared

by two component automata is never an output event for both of them, we de�ne below a

notion of \compatibility" of a collection of port automata. We allow arbitrary \fanout" in

the sense that a single event may be shared by more than two component automata, as long

the event is an output event for at most one of them. This is a bit more general than the

usual de�nition of \linking" in the dataow literature, in which each port of a process may

be connected to at most one port of another process. We do not clutter our theory with any

notion of \input bu�ers" or \channel processes." Rather, we think of an input bu�er for a

port as already incorporated into the state of each component automaton that inputs from

that port. The receptivity, commutativity, and monotonicity conditions in the de�nition of

port automata are, in a sense, abstract descriptions of the properties of these bu�ers.

Formally, supposeM = fM

i

: i 2 Ig is a collection of automata, whereM

i

= (A

i

; Q

i

; q

�

i

;!

i

). The composition of M is the automaton

Y

M = (

[

i2I

A

i

;

Y

i2I

Q

i

; (q

�

i

: i 2 I);!);

where ! is the set of all ((q

i

: i 2 I); a; (r

i

: i 2 I)) such that

� For all i 2 I, if a 2 A

i

, then (q

i

; a; r

i

) 2 !

i

, and if a 62 A

i

, then r

i

= q

i

.

We call

Q

M a network automaton, the collection fM

i

: i 2 Ig a decomposition of

Q

M,

and each of the M

i

a component of

Q

M. Associated with a network automaton

Q

M are

projections

�

i

: A [ f�g ! A

i

[ f�g; �

i

: (

Y

i2I

Q

i

)! Q

i

where the �

i

's are the usual projections associated with the cartesian product, and �

i

is

de�ned as follows:

�

i

(a) =

(

a; if a 2 A

i

;

�; otherwise:

These projections lift to projections �

i

on computations of

Q

M as follows: If  = q

0

a

1

�!q

1

a

2

�! . . .

is a �nite or in�nite computation of M , then

�

i

() = �

i

(q

0

)

�

i

(a

1

)

�! �

i

(q

1

)

�

i

(a

2

)

�! . . . :

Lemma 1 Suppose M =

Q

fM

i

: i 2 Ig. Then a sequence  of transitions is a computation

of M i� �

i

() is a computation of M

i

, for all i 2 I.

Proof { Straightfoward.

A collection M = fM

i

: i 2 Ig of port automata, where M

i

= (A

i

; Q

i

; q

�

i

;!

i

), is called

compatible if for all i; j 2 I with i 6= j we have Y

i

\ Y

j

= ;. IfM is compatible, then

S

i2I

A

i

is a port signature with

Y =

[

i2I

Y

i

; X = (

[

i2I

X

i

) n Y:

7



Our de�nition of compatibility is a strengthened version, suitable for port automata,

of the compatibility condition de�ned by Lynch and Tuttle in [20] for their input/output

automata.

Lemma 2 If M is the composition of a compatible collection fM

i

: i 2 Ig of port automata

(resp. monotone port automata), then M is a port automaton (resp. monotone port automa-

ton).

Proof { Straightforward.

Next, we de�ne the notion of a \fair" computation of a network of port automata. In-

tuitively, a computation is fair if no component automaton ever fails to produce output, if

it tries for a su�ciently long, uninterrupted interval. Formally, if M is the composition of

a compatible collection fM

i

: i 2 Ig of port automata, then a �nite computation  of M is

fair if no output events are enabled in state cod(). An in�nite computation  is fair if for

each i 2 I, either there exist in�nitely many transitions in  whose actions are in A

out

i

, or

else there exist in�nitely many states in  for which A

out

i

is not enabled.

Fairness is a \�nite delay" property that is essential to operational models of dataow

networks, and appears in some form in all such models. However, we note that many

distinct notions of fairness have been de�ned in the literature [11]. Ours, which might be

referred to as \weak process fairness," admits the situation in which a transition or event

becomes repeatedly enabled and disabled during a fair computation, but never appears in

that computation. Thus, it is possible in a fair computation for an automaton with two

output ports to repeatedly choose one port over another for output.

The following result is a kind of \compositionality" result for networks of port automata.

Intuitively, it shows that \networks of networks" are no di�erent than \networks." Although

we do not require this result for any theorems stated in this paper, it is important as justi-

�cation of our interpretation of these theorems as statements about the \implementability"

of various relations in terms of \primitives."

Lemma 3 Suppose M is the composition of a compatible collection fM

ij

: i 2 I; j 2 J

i

g

of port automata, and for each i 2 I, let M

i

be the composition of the compatible collection

fM

ij

: j 2 J

i

g. Then  is a fair computation of M i� �

i

() is a fair computation of M

i

, for

all i 2 I.

Proof { See [20], where a similar theorem is proved about input/output automata.

If M is a network of port automata, then the input/output relation of M is the set of all

pairs (H

in



;H

out



), such that  is a fair initial computation of M .

Suppose R � (V

1

)

X

� (V

1

)

Y

. We say that M strongly implements R if the event

signature A of M has the form A = (X � V ) [ (Y

0

� V ), with Y � Y

0

, and R is the

restriction to (V

1

)

X

� (V

1

)

Y

of the input/output relation of M . We say that M weakly

implements R if M strongly implements a subset of R.

We conclude this section by de�ning some relations of interest.

8



� If F : (V

1

)

X

! (V

1

)

Y

is a function, then the graph of F is the subset of (V

1

)

X

�

(V

1

)

Y

that contains all pairs (x; F (x)) with x 2 (V

1

)

X

.

� fmerge (fair merge) is the set of all ((x

1

; x

2

); y) 2 (V

1

)

2

� (V

1

), such that y is a

shu�e of x

1

and x

2

.

� amerge (angelic merge) is the set of all ((x

1

; x

2

); y) 2 (V

1

)

2

� (V

1

) such that y is a

shu�e of a pre�x x

0

1

of x

1

and a pre�x x

0

2

of x

2

, and such that

1. If x

1

is �nite, then x

0

2

= x

2

.

2. If x

2

is �nite, then x

0

1

= x

1

.

3. If both x

1

and x

2

are in�nite, then either x

0

1

= x

1

or x

0

2

= x

2

.

� imerge (in�nity-fair merge) is the set of all ((x

1

; x

2

); y) 2 (V

1

)

2

� (V

1

) such that y

is a shu�e of a pre�x x

0

1

of x

1

and a pre�x x

0

2

of x

2

, and such that

1. If x

1

is in�nite, then x

0

2

= x

2

.

2. If x

2

is in�nite, then x

0

1

= x

1

.

3. If one of x

1

or x

2

is �nite, then y is �nite.

� uchoice is the set of all (x; y) 2 (V

1

)

;

� (V

1

), such that y is an in�nite sequence of

natural numbers.

� poll is the set of all (x; y) 2 (V

1

)� (V

1

), such that y is a shu�e of x with the in�nite

sequence ��� . . . of special values � .

The relation uchoice describes the behavior of a process, with no inputs and one output,

that repeatedly chooses an arbitrary natural number and outputs it.

The relation poll describes the behavior of a single-input, single-output process that

repeatedly polls its input for the presents of data. If a data value is available, it is transmitted

to the output channel, otherwise the special value � is transmitted. Such a process provides

the capability of branching on the availability of input data. In [22], a denotational semantics

is given for networks that execute programs using polling. It is easy to see that with poll

one can implement fair merge [18].

3 Residuals

In this section we develop the technical machinery needed for the expressiveness proofs.

A residual operation on an automaton M is a partial binary operation " on the set of

transitions of M , such that the following properties hold:

1. For all transitions t; u of M , if t " u is de�ned, then u " t is de�ned, dom(t) = dom(u),

dom(t " u) = cod(u), and cod(t " u) = cod(u " t). Moreover, either event (t) 6=

event (u) and event (t " u) = event (t), or else event (t) = event (u) and event (t " u) = �.

9



2. For all transitions t : q ! r of M , id

q

" t = id

r

, t " id

q

= t, and t " t = id

r

.

3. For all transitions t, u, and v of M , (t " u) " (v " u) = (t " v) " (u " v); whenever

either side is de�ned.

Property (3) may be visualized by thinking of t, u, and v as emanating from one vertex

of a cube, whose remaining edges are �lled in by applying ". If t " u (and hence u " t)

is de�ned, then we say that transitions t and u are consistent. If t " u is not de�ned for

coinitial transitions t; u, then we say that t and u conict.

Intuitively, a residual operation allows us to formalize the idea that certain pairs of tran-

sitions \commute," and thus the order in which they occur in a computation is immaterial.

More precisely, if t and u are consistent, then we think of the two computations t(u " t)

and u(t " u) as \commuting," or as two sequential representations of a single concurrent

computation.

If M is any automaton, then there is an obvious residual operation " on M , with respect

to which the only consistent pairs of transitions t; u are the trivial ones with either t = u or

one of t; u an identity. Formally, given coinitial transitions t : q

a

�!r and u : q

b

�!s, let t " u

and u " t be de�ned exactly when one of the following clauses holds:

1. t = u, t " u = id

s

, and u " t = id

r

.

2. t is an identity transition and u is not, t " u = id

s

and u " t = u.

If M is a port automaton, then its additional structure makes it possible to obtain a

residual operation with a larger domain of de�nition, by adding the clause:

3. If t and u are input transitions, and port(a) 6= port(b), then t " u and u " t are the

unique transitions for events a and b, respectively, such that dom(t " u) = cod(u),

dom(u " t) = cod(t), and cod(t " u) = cod(u " t).

For a monotone port automaton, we may add another clause:

4. If t is an input transition and u is an output transition, then t " u is the unique

transition for event a such that dom(t " u) = cod(u), and u " t is the unique transition

for event b such that dom(u " t) = cod(t) and cod(u " t) = cod(t " u).

Lemma 4 If M is an arbitrary (resp. port, monotone port) automaton, and " is de�ned by

clauses (1)-(2) (resp. (1)-(3), (1)-(4)), then " is a residual operation on M .

Proof { It is obvious in each case that " satis�es the �rst two conditions in the de�nition

of a residual operation. It remains to verify the third condition, that (t " u) " (v " u) =

(t " v) " (u " v); whenever either side is de�ned. Suppose, without loss of generality, that

(t " u) " (v " u) is de�ned. We �rst note that

� In case u = v, the result is obvious.

10



� In case t = u, then t " u, and hence (t " u) " (v " u), is an identity. Since u " v is

de�ned by hypothesis, so is t " v, and (t " v) " (u " v) = (u " v) " (u " v), which is an

identity, proving the result.

� In case t = v, then v " u = t " u, hence (t " u) " (v " u) is an identity. Since

t " v = t " t is an identity, so is (t " v) " (u " v).

� In case one or more of t, u, v is an identity, the result is trivial by clauses (1) and (2).

For the remainder of the proof, we assume that t, u, v are all distinct, and that none

of them is an identity. Let a, b, and c be the respective events. Examination of clauses

(3)-(4) shows that t " u and (t " u) " (v " u) must be transitions for event a, u " v must

be a transition for event b, and v " u must be a transition for event c. Similarly, if t " v

and (t " v) " (u " v) are de�ned, then they must both be transitions for event a. Thus,

to complete the proof, we need only show that t " v and (t " v) " (u " v) are de�ned, and

that the codomain of (t " v) " (u " v) equals that of (t " u) " (v " u), for then these two

transitions, having the same domain, codomain, and event, must be identical. Furthermore,

we may assume that the three events a; b, and c are all for di�erent ports, since it follows

from clauses (1)-(4) that the only way that transitions for the same port can be consistent

is if they are equal.

We consider the various cases:

� Suppose M is an arbitrary automaton, and " is de�ned by clauses (1)-(2). Then we

have already eliminated all the possible ways in which t " u can be de�ned, so there is

nothing more to prove.

� SupposeM is a port automaton, and " is de�ned by clauses (1)-(3). The only remaining

way that t " u can be de�ned is if both are input transitions. Then for u " v to be

de�ned, it must be that v is also an input transition. Thus, all three transitions

are input transitions for di�erent ports, and the result follows immediately by the

receptivity and commutativity properties of port automata.

� Next, suppose M is a monotone port automaton, and " is de�ned by clauses (1)-(4).

There are two additional ways in which t " u can be de�ned: either t is an input

transition and u is an output transition, or t is an output transition and u is an input

transition.

If t is an input transition and u is an output transition, then for u " v to be de�ned, it

must be the case that v is also an input transition. But then t " v is de�ned by clause

(3), and (t " v) " (u " v) is de�ned by clause (4). The result now follows by the fact

that there is exactly one transition from state cod(u " v) = cod(v " u) for input event

a.

If t is an output transition and u is an input transition, then for (t " u) " (v " u)

to be de�ned, it must be the case that v " u, and hence v, is an input transition.

Then t " v and (t " v) " (u " v) are de�ned by clause (3). Now, u " t and v " t are

11



de�ned, and are transitions for events b and c, respectively, hence (u " t) " (v " t)

is de�ned by clause (3). Moreover, (u " t) " (v " t) = (u " v) " (t " v), and

(v " t) " (u " u) = (v " u) " (t " u), by the fact that input transitions are uniquely

determined by their domain and event. Then the codomain of (t " u) " (v " u) must

equal that of (u " t) " (v " t). Similarly, the codomain of (t " v) " (u " v) must equal

that of (v " t) " (u " t). But the codomains of (u " t) " (v " t) and (v " t) " (u " t)

must be equal, proving the result.

Next, we show that residual operations de�ned on the elements of a collection M of

automata induce \componentwise" a residual operation on the composition

Q

M.

Lemma 5 Suppose M =

Q

fM

i

: i 2 Ig, and suppose that "

i

is a residual operation on M

i

,

for each i 2 I. If t; u are transitions of M , and �

i

(t) "

i

�

i

(u) is de�ned for all i 2 I, then

there is a unique transition t " u of M such that �

i

(t " u) = �

i

(t) "

i

�

i

(u) for all i 2 I.

Moreover, " is a residual operation on M .

Proof { Suppose t; u are such that �

i

(t) "

i

�

i

(u) is de�ned for all i 2 I. Let a = event (t),

b = event (u), and c

i

= event (�

i

(t) "

i

�

i

(u)) for all i 2 I. The condition, �

i

(t " u) = �

i

(t) "

i

�

i

(u) for all i 2 I, ensures that if t " u exists, then it must satisfy:

dom(t " u) = (dom(�

i

(t

i

) "

i

�

i

(u

i

)) : i 2 I)

cod(t " u) = (cod(�

i

(t

i

) "

i

�

i

(u

i

)) : i 2 I)

Moreover, if " is to be a residual operation, we must also have

event (t " u) =

(

a; if a 6= b

�; otherwise:

Clearly, �

i

(dom(t " u)) = dom(�

i

(t) "

i

�

i

(u)) and �

i

(cod(t " u)) = cod(�

i

(t) "

i

�

i

(u)) for all

i 2 I. To show �

i

(event (t " u)) = c

i

for all i 2 I, let i 2 I be arbitrary. Note that either

c

i

= �

i

(a) or c

i

= �, because c

i

= event (�

i

(t) "

i

�

i

(u)). There are two cases:

1. If a = b, then �

i

(event (t " u)) = �. But �

i

(a) = �

i

(b), so c

i

= � as well.

2. If a 6= b, then �

i

(event (t " u)) = �

i

(a). If �

i

(a) 6= �

i

(b), then we must have �

i

(a) = c

i

.

If �

i

(a) = �

i

(b), then a 62 A

i

, so we must have �

i

(a) = � = c

i

.

Thus, �

i

(t " u) = �

i

(t) "

i

�

i

(u) for all i 2 I. Since �

i

(t) "

i

�

i

(u) is a transition of M

i

for all

i 2 I, it follows that �

i

(t " u) is a transition of M .

It is now straightforward to check that " satis�es the axioms for a residual operation.

Finally, we show how to extend a residual operation " onM to an operation * on the �nite

computations of M . We do this by double induction on the length of the �nite computations

12



involved. To understand this de�nition, it is helpful to think of computations  and � as

being the bottom two sides of a diamond-shaped lattice, which we try to �ll in so that

for each small diamond in the lattice, if t and u are the bottom two sides, then t and u

are consistent, and the top two sides are t " u and u " t. The computations  and � are

consistent if the lattice can be completely �lled in, and if so, then  * � is the side opposite

, and � *  is the side opposite �.

Formally, if k � 0 then let id

k

q

denote the length-k computation sequence of M that

contains only transitions id

q

. (If k = 0, then id

k

q

consists of a single state, and no transitions.)

Suppose  : q ! r and � : q ! s are coinitial �nite computations of M . Then

1. If  = id

0

q

, then  * � = id

0

s

.

2. If  6= id

0

q

and � = id

0

q

, then  * � = .

3. If  = t

0

, � is the single transition u, t " u is de�ned, and 

0

* (t " u) is de�ned, then

 * � = (t " u)(

0

* (u " t)):

4. If jj > 0, � = u�

0

with j�

0

j > 0,  * u is de�ned, and ( * u) * �

0

is de�ned, then

 * � = ( * u) * �

0

:

To state the properties of *, it is convenient to de�ne one more construction, which we

call \completion," on automata. Formally, suppose M = (A;Q; q

�

;!) is an automaton.

The completion of M is the automaton M

�

= (A

+

; Q; q

�

;)), where A

+

is the set of all

�nite, nonempty sequences of elements of A, and ) contains all triples (q; �; q), and all

triples (q; a

1

. . . a

n

; r) such that there exists a �nite computation  : q ! r of M , with trace

a

1

. . .a

n

.

Lemma 6 Suppose M is an automaton, and " is a residual operation on M . Then * is a

residual operation on M

�

. Moreover, for all transitions ; �; � of M

�

, with  and � coinitial

and � and � composable:

1.  * �� = ( * �) * �, whenever either side is de�ned.

2. �� *  = (� * )(� * ( * �)), whenever either side is de�ned.

Proof { Straightforward inductive arguments.

We are now ready to de�ne an \extension" preorder on the set of computations of an

automaton M . Intuitively, if  and � are coinitial computations, then � is an \extension" of

 i� every �nite pre�x of  can be transformed into a �nite pre�x of � by a series of steps

in which either adjacent \concurrent" transitions are \permuted," or \padding" (identity

transitions) is inserted or deleted.

Formally, for �nite computations  and � of M , de�ne 

<

�

� to hold i�  and � are

consistent and  * � is a sequence of identities. Next, extend the relation

<

�

to in�nite

computations by de�ning 

<

�

� i� for every �nite pre�x 

0

of , there exists a �nite pre�x

�

0

of �, such that 

0

<

�

�

0

.

13



Lemma 7 Suppose  and � are �nite computations. If  and � are consistent, then (� * )

is a

<

�

-supremum of f; �g. Conversely, if f; �g is

<

�

-bounded, then  and � are consistent.

Proof { Since  * ((� * )) = ( * ) * (� * ) and � * ((� * )) = (� * ) * (� * ),

both of which are sequences of identities, it is clear that (� * ) is a

<

�

-upper bound of

f; �g. Suppose � is any

<

�

-upper bound of f; �g. Then (� * ) * � = ( * �)((� * ) *

(� * )) = ( * �)((� * �) * ( * �)), which is a sequence of identities, so (� * )

<

�

�.

Conversely, if f; �g is

<

�

-bounded, then there exists a �nite � such that 

<

�

� and �

<

�

�.

Then  * � and ( * �) * (� * �) are sequences of identities. By Lemma 6, ( * �) * (� * �)

is de�ned, hence  * � is de�ned.

Theorem 1 Suppose M is an automaton, and " is a residual operation on M . The relation

<

�

is a preorder, on the set of all computations of M , which extends the pre�x ordering. More-

over, the set of all

<

�

-equivalence classes of computations, with the induced partial order, is a

Scott domain whose �nite elements are exactly the equivalence classes of �nite computations.

Proof { For �nite computations, the relation

<

�

extends the pre�x ordering, since if  is

a pre�x of �, then � = � for some �, hence  * � = ( * ) * �, which is a sequence

of identities. Reexivity holds because if cod() = q,  *  = id

jj

q

. To show transitivity,

suppose 

<

�

� and �

<

�

�. Then  * � is a sequence of identities, so ( * �) * (� * �)

is a sequence of identities. Since ( * �) * (� * �) = ( * �) * (� * �), it follows that

( * �) * (� * �) is a sequence of identities. But � * � is a sequence of identities because

�

<

�

�, hence  * � is a sequence of identities.

Next, consider the extension to in�nite computations. That

<

�

is reexive and transitive

is immediate. The fact that

<

�

extends the pre�x ordering is also clear, since  is a pre�x of

� i� every �nite pre�x of  is also a pre�x of �.

Now, by standard results (see, e.g. [12]), the ideal completion I of the set of �nite

computations, with respect to the

<

�

preorder, is a Scott domain whose �nite elements are

exactly the principal ideals. We claim that the map h, taking each

<

�

-equivalence class []

to f� : � �nite; �

<

�

g (which is clearly an element of I), is an order-isomorphism. Since

each equivalence class [] with  �nite maps to the principal ideal generated by , we then

have the desired result. Obviously h is well-de�ned, and satis�es h([]) � h([�]) i� 

<

�

�.

Note that h is injective, because if [] 6= [

0

] then either  has a �nite pre�x � such that

� 62 h([

0

]), or else 

0

has a �nite pre�x �

0

such that �

0

62 h([]). To complete the proof, we

must show that h is also surjective; that is, every

<

�

-ideal � of the set of �nite computations

is h([]) for some computation .

Suppose � 2 I. We �rst observe that � is at most countable (because the set of all �nite

computations is countable), hence has an enumeration (perhaps with repetition) �

0

; �

1

; . . ..

Next, we inductively construct a sequence 

0

; 

1

; . . . of elements of �, forming a chain under

the pre�x ordering, such that �

k

<

�



k+1

for all k � 0. For the basis step, let 

0

be the empty

computation, which is in � because � is an ideal. For the induction step, suppose 

k

2 � has

been de�ned for some k � 0. Since �

k

; 

k

2 �, and � is directed, it follows by Lemma 7 that

�

k

and 

k

are consistent. De�ne 

k+1

= 

k

(�

k

* 

k

). Clearly, 

k

is a pre�x of 

k+1

. Since

14





k+1

is a

<

�

-supremum of f

k

; �

k

g � �, and since the ideal � is closed under suprema of �nite

subsets, it follows that 

k+1

2 �. Also, �

k

<

�



k+1

, since �

k

* 

k+1

= (�

k

* 

k

) * (�

k

* 

k

),

which is a sequence of identities.

Let  be the supremum of the chain 

0

; 

1

; . . . with respect to the pre�x ordering. We

claim that h([]) = �. Clearly, if � 2 �, then � = �

k

for some k � 0, hence �

<

�



k+1

. This

shows � � h([]). Conversely, if � is a �nite computation with �

<

�

, then �

<

�

� for some

�nite pre�x � of . But this means �

<

�



k

for some k � 0, hence h([]) � � because 

k

2 �

and � is an ideal.

Lemma 8 The map that takes each computation  to its port history H



is continuous, with

respect to the

<

�

preorder on computations, and the pre�x ordering � on port histories.

Proof { We �rst show monotonicity. A straightforward induction shows that if  and �

are consistent �nite computations, hence having supremum � = �( * �), then H

*�

is the

unique history such that H

�

= H

�

H

*�

. A special case of this result is: For �nite  and �, if



<

�

�, then H



� H

�

. The extension to in�nite  and � is straightforward. Continuity then

follows from the fact that the ordering � on port histories is algebraic.

4 Application: Networks of Monotone Port Automata

We now consider the special properties enjoyed by the

<

�

preorder for networks of monotone

port automata. Throughout this section, letM be the composition of a compatible collection

fM

i

: i 2 Ig of monotone port automata. For each i 2 I, let "

i

be the residual operation

appropriate for the monotone port automaton M

i

, and let ", *, and

<

�

be de�ned for M as

in the previous section.

Theorem 2 A computation  of M is fair i� it is

<

�

-maximal among all computations 

0

of M with H

in

(

0

) = H

in

().

Proof { Suppose  is not fair. Then for some i 2 I we must have  = ��, where A

out

i

is

enabled in every state of �, but no event in A

out

i

appears in �. Let a be an event in A

out

i

that

is enabled in state dom(�), and let t be a transition for event a from that state. We shall

write t for the transition t as well as the computation consisting of the single transition t.

Since � contains no events in A

out

i

, it follows by the monotonicity property of M

i

that t and

�

0

are consistent whenever �

0

is a �nite pre�x of �. Let 

0

be the supremum, with respect to

the pre�x ordering, of f�t(�

0

* t) : �

0

�nite; �

0

� �g. Then we have 

<

�



0

, but not 

0

<

�

.

But since  and 

0

have the same input history, we have shown that  is not maximal.

Conversely, suppose that  is not maximal. Then there exists 

0

, with the same input

history as , such that 

<

�



0

but not 

0

<

�

. This means that for some �nite pre�x �

0

of



0

, it must be that �

0

* � is not a sequence of identities for any �nite pre�x � of . Choose

� just long enough so that �

0

* � has as few nonidentity transitions as possible. Note that

�

0

* � can contain only output or identity events, since otherwise  and 

0

would not have

15



the same input history. Let � be the su�x of  following �, so that  = ��. Let t be the

�rst output transition in �

0

* �, and suppose the output event of t is in A

out

i

. Now, t must

be consistent with every �nite pre�x �

0

of �, otherwise  and 

0

would not be consistent.

However, the consistency of t with all such �

0

implies that � can contain no events in A

out

i

.

But then since for every �nite pre�x �

0

of � the transition t * �

0

is enabled in state cod(�

0

),

it must be that  is not fair.

Lemma 9 Every computation  of M

<

�

-extends to a fair computation with the same input

history.

Proof { The set of all computations 

0

such that 

<

�



0

and such that  and 

0

have

the same input history is nonempty, and has the property that every directed subset has a

supremum. By Zorn's Lemma, it follows that this set has a maximal element �. By Theorem

2, � is fair.

Lemma 10 Suppose  and � are coinitial computations for M , such that � consists entirely

of input transitions, and such that the input histories H

in



and H

in

�

are consistent. Then there

exists a computation � of M , with H

in

�

= supfH

in



;H

in

�

g, such that 

<

�

� and �

<

�

�.

Proof { A straightforward induction shows that 

0

and �

0

are consistent, hence by Lemma

7 have a

<

�

-supremum �

0

, whenever 

0

is a �nite pre�x of  and �

0

is a �nite pre�x of �. Let

� be the set of all such �

0

. Then it is easy to see that � is directed, hence has a supremum

� by Theorem 1. It follows from Lemma 8 that � has the required properties.

Suppose R � (V

1

)

X

� (V

1

)

Y

. If x̂ 2 (V

1

)

X

, then de�ne R � x̂ (read R �nitely below

x̂) to be the set of all �nite (x; y) such that x � x̂ and y � ŷ for some (x̂; ŷ) 2 R. A chain

(x

0

; y

0

) � (x

1

; y

1

) � . . . of elements of R � x̂ is called �nal if for all (x; y) 2 R � x̂, there

exists k � 0 such that either (x; y) � (x

k

; x

k

) or else (x; y) and (x

k

; y

k

) are incomparable

under �.

We say that relation R is

� total if for all x 2 (V

1

)

X

, there exists y 2 (V

1

)

Y

such that (x; y) 2 R.

� monotone if whenever (x; y) 2 R and x � x

0

, then there exists y

0

with y � y

0

and

(x

0

; y

0

) 2 R.

� continuous if for all x 2 (V

1

)

X

, whenever (x

0

; y

0

) � (x

1

; y

1

) � . . . is a �nal chain in

R� x, then supf(x

k

; y

k

) : k � 0g 2 R.

Theorem 3 Suppose R � (V

1

)

X

� (V

1

)

Y

. Then

1. If R is the input/output relation of a network automaton with monotone components,

then R is total and monotone.

16



2. If R is is total, monotone, and continuous, then R is the input/output relation of a

network automaton with monotone components.

Proof { (1) Suppose R is the input/output relation of a network automaton M , with

monotone components. To show R is total, we must show how, given an arbitrary input

history x 2 (V

1

)

X

, to construct a fair computation , with H

in



= x. This is done by a

simple dovetailing construction, which we omit. To show R monotone, suppose  is a fair

initial computation of M , and suppose x 2 (V

1

)

X

is an input history with H

in



� x. Let �

be an initial computation of M that consists only of input transitions, such that H

in

�

= x.

By Lemma 10, there exists a computation � for M , with H

in

�

= x, such that 

<

�

� and �

<

�

�.

By Lemma 9, � extends to a fair computation �

0

with the same input history, x. But then

(H

in

�

0

;H

out

�

0

) 2 R, and since H

out



� H

out

�

0

by Lemma 8, we have the desired result.

(2) Suppose R is total, monotone, and continuous. Construct a collection fM

p

: p 2 Y g

as follows:

� Let the input ports of M

p

be X, and let M

p

have the single output port p.

� Let M

p

have internal states (V

�

)

X

�V

�

, with the least element of this set as the initial

state. Intuitively, the (V

�

)

X

component of the state of M

p

records the input that has

arrived so far, and the V

�

component keeps track of the output that M

p

has produced

so far on port p.

� Let the transition relation of M

p

contain:

1. The identity transitions required by the de�nition of an automaton.

2. All input transitions of the form (x; q)

a

�!(x

0

; q), where if a = (p; v), then x

0

(p) =

(x(p))v and x

0

(p

0

) = x(p

0

) for p

0

6= p.

3. All output transitions of the form (x; q)

b

�!(x; qv), where if b = (p; v), then qv �

y(p) for some y 2 R(x).

Clearly, fM

p

: p 2 Y g is compatible. It is also easy to use the monotonicity of R to verify

that each M

p

is a monotone port automaton.

Let M =

Q

fM

p

: p 2 Y g. We claim that M has R as its input/output relation. Given

(x; y) 2 R, a straightforward dovetailing construction produces a fair initial computation 

of M , with H

in



= x and H

out



= y.

Conversely, suppose  : q

0

a

1

�!q

1

a

2

�! . . . is a fair initial computation of M . A simple

induction shows that the (V

�

)

X

components of the states of each of the M

p

's are identical

for each state q

k

in . Let x

k

be the common value of these components in state q

k

. For

each k � 0, let y

k

2 (V

�

)

Y

be de�ned so that for each p 2 Y , y

k

(p) is the V

�

component of

the state of M

p

in q

k

. It is easy to see that this sequence (x

0

; y

0

); (x

1

; y

1

); . . . is a �-chain

in R � H

in



, with (H

in



;H

out



) as its supremum. We claim that it is in fact a �nal chain in

R � H

in



, thus (H

in



;H

out



) 2 R follows by the continuity of R. If it were not �nal, then

there would be some (x; y) 2 R� H

in



and some p 2 Y such that y

0

= supfy

k

(p) : k � 0g is

17



a proper pre�x of y(p). Thus, there would exist K � 0 such that y

k

(p) = y

0

for all k � K.

Since this would mean that an output transition of M

p

is enabled in state q

k

, for all k � K,

but that no output transitions for M

p

appear in  for k � K, we would have a contradiction

with the assumed fairness of .

Corollary 4 The following relations are strongly implemented by network automata with

monotone components:

1. The graph of any continuous function on port histories.

2. The relations amerge and uchoice.

3. The relation imerge.

Proof { The relations in (1) are total, monotone, and continuous, as are the relations

amerge and uchoice. The relation imerge is total and monotone, but not continuous.

However, the relation imerge can be strongly implemented by a network that consists of a

uchoice component and a component with functional behavior, which obeys the following

algorithm: Use uchoice to select an arbitrary natural number n, then read n+1 values from

the �rst input and transfer them to the output. If data is not available, then wait for it.

Once n+1 values have been read and transferred, choose a new number n

0

, read n

0

+1 values

from the second input and transfer them to the output. Repeat this procedure forever.

Corollary 5 The following relations are not weakly implemented by any network automaton

with monotone components.

1. The relation poll.

2. The relation fmerge.

Proof { These relations have no total, monotone subsets.

For example, if poll had a total, monotone subset P , then P must contain (x; y), where

x is the empty history and y is the history that consists of an in�nite sequence of � 's. If

x

0

is any nonempty history in which a value other than � appears, then x � x

0

, hence by

monotonicity there would exist y

0

, with y � y

0

and (x

0

; y

0

) 2 P . But this is impossible, since

y is maximal with respect to �. A similar argument works for fmerge.

5 Discussion

We have shown that fair merge is strictly more powerful than the angelic merge and in�nity-

fair merge primitives. We accomplished this by identifying a class of networks capable of

implementing the weaker primitives, but not fair merge. Although it is not really a surprise

to �nd that fair merge is strictly more powerful than angelic merge, it is somewhat surprising

18



to �nd that fair merge is strictly more powerful than in�nity-fair merge. This is because the

�nding contradicts a dogma that holds fairness, countable indeterminacy, and the failure of

continuity to be somehow equivalent. Notice in particular, that both uchoice and imerge

exhibit countable indeterminacy, but uchoice is continuous and imerge is not, and both

are strictly weaker than fair merge, even in combination with amerge.

The notion of a residual operation, which points out commutativity properties of transi-

tions in an automaton, served as our main tool. Close examination of the proofs in Sections

4 and 5 will reveal that all the important properties used can be expressed abstractly as

properties of a residual operation on an automaton, and that our assumptions about the

concrete structure of the various kinds of automata can be replaced by axioms about a

residual operation on an automaton. In fact, such an approach was taken in [25]. There,

a \concurrent transition system" was de�ned to be an automaton plus a residual operation

(called there a \translation operation"), and a class of automata, corresponding closely to

the monotone port automata de�ned here, was de�ned axiomatically. What is missing from

[25], though, is a concrete demonstration of the coincidence of fairness and maximality for

networks of such automata. This defect is remedied in the present paper.

Our proof of Theorem 2 depends heavily on the properties of monotone automata. Since

we have shown that there is no way to perform fair merging if one has only monotone au-

tomata, it would at �rst appear that the pleasant theory developed in this paper, in particular

the coincidence of fair and

<

�

-maximal computations, does not extend to networks capable

of fair merge. However, we can de�ne a port automaton M

poll

that strongly implements the

relation poll, by a construction similar to that used in part (3) of the proof of Theorem 3,

except that we do not include transitions that output � from any states in which a non-�

output is possible. Although the automaton M

poll

is not monotone, since the arrival of

input conicts with the outputting of � , it appears that Theorem 2 extends to networks

of monotone processes and M

poll

, when the latter is equipped with the residual operation

appropriate for non-monotone automata. Since fair merge can be implemented easily once

poll is available [18], it would appear that the power of fair merge can be obtained, while re-

taining many of the pleasant theoretical properties of monotone networks. We are currently

investigating the consequences of these observations.

We have not considered dynamic or recursively de�ned networks in this paper. However,

our proofs do apply to networks that contain a countably in�nite number of processes. This

makes it seem likely that similar proofs could be given once a formalization of dynamic

networks as the in�nite limits of \�nite unwindings" is carried out. Since angelic merge

is essentially an iterated version of McCarthy's amb, such results would also imply the

impossibility of performing fair merging in recursive programs with determinate primitives

and amb.

References

[1] S. Abramsky. On expressing fair merge with amb. July 1984. Private communication.

[2] K. R. Apt and G. D. Plotkin. A cook's tour of countable nondeterminism. In S. Even

19



and O. Kariv, editors, Proceedings of ICALP 81, pages 479{494, Springer-Verlag, 1981.

LNCS 115.

[3] K. R. Apt and G. D. Plotkin. Countable non-determinism and random assignment.

Journal of the ACM, 33(4):724{767, 1986.

[4] R. J. Back. A continuous semantics for unbounded nondeterminism. Theoret. Comput.

Sci., 23(2):187{210, 1983.

[5] R. J. Back. Semantics of unbounded nondeterminism. In Proceedings of 7th Colloquium

on Automata, Languages and Programming, pages 51{63, Springer-Verlag, 1980. LNCS

85.

[6] G. Berry and J.-J. L�evy. Minimal and optimal computations of recursive programs.

Journal of the ACM, 26(1):148{175, January 1979.

[7] G. Boudol. Computational semantics of term rewriting systems. In M. Nivat and J.

Reynolds, editors, Algebraic Methods in Semantics, pages 169{236, Cambridge Univer-

sity Press. 1985.

[8] S. D. Brookes. On the relationship of ccs and csp. In Proceedings of ICALP 83, Springer

Verlag. Lecture Notes in Computer Science, 1983.

[9] S. D. Brookes and W. C. Rounds. Behavioral equivalence relations induced by pro-

gramming logics. In Proceedings of ICALP 83, 1983.

[10] W. Clinger and C. Halpern. Alternative semantics for McCarthy's amb. In S. D.

Brookes, A. W. Roscoe, and G. Winskel, editors, Seminar on Concurrency, pages 467{

478, Springer-Verlag, 1985. LNCS 197.

[11] Nissim Francez. Fairness. Springer-Verlag, 1986.

[12] I. Guessarian. Algebraic Semantics. Volume 99 of Lecture Notes in Computer Science,

Springer Verlag, 1981.

[13] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,

21(8):666{676, 1978.

[14] G. Huet. Formal structures for computation and deduction (�rst edition). May 1986.

Unpublished manuscript. INRIA, France.

[15] B. Jonsson. Compositional Veri�cation of Distributed Systems. PhD thesis, Uppsala

University, Uppsala, Sweden, 1987.

[16] G. Kahn. The semantics of a simple language for parallel programming. In J. L.

Rosenfeld, editor, Information Processing 74, North-Holland, 1974.

[17] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In B.

Gilchrist, editor, Information Processing 77, North-Holland, 1977.

[18] R. M. Keller. Denotational models for parallel programs with indeterminate operators.

In E. J. Neuhold, editor, Formal Description of Programming Concepts, pages 337{366,

North-Holland. 1978.

[19] J.-J. L�evy. R�eductions Correctes et Optimales dans le Lambda Calcul. PhD thesis,

Universit�e Paris VII, 1978.

[20] N. A. Lynch and M. Tuttle. Hierarchical Correctness Proofs for Distributed Algorithms.

Technical Report MIT/LCS/TR-387, M. I. T. Laboratory for Computer Science, April

1987.

20



[21] R. Milner. A Calculus of Communicating Systems. Volume 92 of Lecture Notes in

Computer Science, Springer Verlag, 1980.

[22] P. Panangaden. Abstract interpretation and indeterminacy. In Proceedings of the 1984

CMU Seminar on Concurrency, pages 497{511, 1985. LNCS 197.

[23] D. Park. The \fairness problem" and non-deterministic computing networks. In Pro-

ceedings of the Fourth Advanced Course on Theoretical Computer Science, Mathematisch

Centrum, pages 133{161, 1982.

[24] G. D. Plotkin. A powerdomain construction. SIAM Journal of Comput., 5(3):452{487,

1976.

[25] E. W. Stark. Concurrent transition system semantics of process networks. In Fourteenth

ACM Symposium on Principles of Programming Languages, pages 199{210, January

1987.

21


