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Abstract. We describe a method for converting the problem of com-

puting steady-state probabilities of a continuous-time Markov chain into

the problem of computing absorption probabilities for a related chain.

The construction enables us to apply compositional techniques for com-

puting absorption probabilities that we have previously developed for

probabilistic I/O automata to be used for computing certain steady-state

quantities as well. The method has been implemented, and we consider

the issue of its practicality in the context of its application to an an

example problem.

1 Introduction

In previous work [WSS94,WSS97] we introduced probabilistic I/O automata

(PIOA) as a formal model for systems that exhibit concurrent and proba-

bilistic behavior. PIOA are similar in many respects to stochastic automata

[Buc99,Pla85,PA91,PF91], and like stochastic automata, PIOA are associated

with continuous-time Markov chains (CTMCs). PIOA are also equipped with a

composition operation by which a complex automaton can be constructed from

simpler components. Both PIOA and stochastic automata can thus be seen as a

formalism for describing large CTMC system models from simpler components.

The composition operation for PIOA is de�ned in essentially the same way as

for stochastic automata, however, the PIOA model draws a distinction between

input (passive) and output (active) actions, and in forming the composition of

automata only input/input or input/output synchronization is permitted | the

output/output case is prohibited.

In [SS98,SP99] we presented algorithms for calculating certain kinds of per-

formance parameters for systems modeled in terms of PIOA. These algorithms

work in a compositional fashion; that is, by treating the components of a compos-

ite system in succession rather than all at once. The compositional approach can
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help avoid the state-space explosion problem in such calculations by a�ording

the opportunity to perform state-space reduction as each successive component

is treated. Our algorithms lend themselves most naturally to transient analyses;

for example, computing the probability that a particular action will eventually

be performed if the system is started in an initial state, or computing the ex-

pected time until a particular action occurs. However, one typically also wants

to perform steady-state analyses, which concern the long-run probability that

the system will be in a particular state or set of states. Traditional methods

for performing steady-state analysis on Markov chains [Ste94] involve �rst con-

structing a description of the global state space and then solving a system of

linear equations having dimension equal to the number of global states. The

amount of memory required to store the solution vector becomes the limiting

factor in how large a system can be treated in the traditional way.

Though there has recently been signi�cant progress in using techniques such

as tensor (or Kronecker) product representations for compact representation of

large Markov chains, we became interested in whether there was a way to make

use of our compositional techniques for PIOA to perform steady-state as well

as transient analyses. This paper describes a technique by which this can be

accomplished, gives a theoretical justi�cation for the technique, and considers

the question of the practicality of the technique in the context of an example.

The idea underlying our technique is a simple one. Suppose we wish to com-

pute the steady-state probability that a system described by a CTMC is in

particular set of states. For example, in Section 6 we will consider, for a resource

allocation protocol, the steady-state probability that the resource is free. We

modify the original system description by adding to it an additional \random

alarm clock" component, which runs in parallel with the rest of the system. For-

mally, the alarm clock is a two-state CTMC which waits in its initial state for a

random time drawn from an exponential distribution with mean 1=�, at which

time the alarm goes o� and the alarm clock takes a transition to its �nal state.

Now, suppose further that the alarm clock interacts with the original system

in such a way that at the instant the alarm goes o�, the state of the original

system becomes \frozen." Then the modi�ed system consisting of system plus

alarm clock is an absorbing CTMC, having one absorbing state for each of the

states of the original system. The probability of absorption in any particular

absorbing state will be equal to the probability that the system was in the

corresponding original state at the time the alarm went o�. If we now let �

go to zero, so that the alarm clock takes longer and longer before going o�,

then the probability of absorption in any particular absorbing state approaches

the steady-state probability of the system being in the corresponding original

state. Thus, the alarm clock construction provides a way to convert a problem

of computing steady-state probabilities for a given system into a problem of

computing absorption probabilities for a related system.

The rest of the paper is organized as follows. In Section 2, we give a theoretical

justi�cation for the alarm-clock method. In Section 3, we de�ne probabilistic I/O

automata and the associated composition operation. In Section 4, we de�ne the
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alarm clock construction on PIOA. In Section 5, we show that in case the sets of

states for which steady-state probabilities are desired can be de�ned in terms of

an external observer, then the alarm clock construction need only be performed

on the observer, rather than on the entire system description. This facilitates

the use of compositional techniques. In Section 6, we consider the application of

the the technique to a simple resource-allocation protocol, and we discuss issues

of practicality. Section 7 contains some concluding remarks.

2 Steady-State Probabilities via Absorption

In this section, we give a theoretical justi�cation for the use of the alarm clock

construction to express steady-state probabilities as limits of absorption prob-

abilities. Lemma 1 gives the basic result in a succinct form. This result, which

seems intuitively obvious yet still requires some proving to establish, will likely

not come as a surprise to probabilists. However, a complete proof has been in-

cluded since it was not clear where to �nd a reference that gave the result in

the form we need. We assume that the reader is familiar with the basics of

continuous-time Markov chains. Background on this topic may be found, for

example, in [Br�e99].

Lemma 1. Let G be the generator matrix for a �nite-state CTMC M with n

states. For � > 0, de�ne the 2n� 2n block matrix G

�

as follows:

G

�

=

0

@

0 0

�I G� �I

1

A

Then G

�

is the generator of an absorbing CTMC. Let abs

�

(�) denote the n-

vector of absorption probabilities when the chain is started at t = 0 with initial

distribution (0 �). Then lim

�!0

+
abs

�

(�) exists and is a stationary distribution

for M.

Proof. Since G is �nite-dimensional it can be uniformized; that is, we may write:

G = �(K � I)

where � = max

i

jG(i; i)j and K is a transition matrix. Then for � > 0 we have

G

�

= (�+ �)(K

�

� I)

where

K

�

=

0

@

I 0

�

�+�

I

�

�+�

K

1

A

Clearly, K

�

is the transition matrix of an absorbing Markov chain. If abs

�

(�)

denotes the absorption probability vector when the chain is started with ini-

tial distribution (0 �), then abs

�

(�) is given explicitly by the formula (see,
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e.g. [Br�e99], Section 6.2):

abs

�

(�) = �(

�

�+ �

K)

�

(

�

�+ �

I)

where

(

�

�+ �

K)

�

=

1

X

n=0

(

�

� + �

K)

n

is the so-called \fundamental matrix" of the absorbing chain.

We claim that:

1. �̂ = lim

�!0

+
abs

�

(�) exists.

2. �̂ is a stationary distribution for K.

To see that lim

�!0

+
abs

�

(�) exists, we �rst observe that when K is a tran-

sition matrix, and � > 0 and � > 0, then the summation de�ning (

�

�+�

K)

�

is

guaranteed to converge and we then have

(

�

�+ �

K)

�

= (I �

�

�+ �

K)

�1

:

Let

M

�

= (

�

�+ �

K)

�

(

�

�+ �

I);

then M

�

may be regarded as a matrix whose entries are rational functions of �.

It is easy to prove that for any �xed � > 0 the matrix M

�

is a transition matrix,

hence its entries lie in the interval [0; 1]. Now, an arbitrary rational function r(�)

either has a �nite right limit r(0

+

) or else r(�) diverges to 1 or �1 as �! 0

+

.

Since the matrix M

�

is a transition matrix for all �xed � > 0, it is impossible for

the value of any individual entry to diverge to 1 or �1 as �! 0

+

. Hence

^

M = lim

�!0

+

(

�

�+ �

K)

�

(

�

�+ �

I)

exists, as does �̂ = �

^

M .

To see that �̂ is a stationary distribution for K, note that from

abs

�

(�) = �(

�

�+ �

K)

�

(

�

�+ �

I)

= �(I �

�

�+ �

K)

�1

(

�

� + �

I)

we may derive the relation

abs

�

(�)(I �

�

�+ �

K) = �(

�

�+ �

I):

Taking limits on both sides as �! 0 yields:

�̂(I �K) = 0;

from which we conclude �̂ = �̂K; that is, �̂ is a stationary vector for K. Since

K is the embedded chain of the CTMC M any stationary vector for K is also a

stationary vector for M, proving the desired result. ut
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The previous result extends easily to the case where there are nontrivial

classes of absorbing states, rather than singletons. In the next result we use

the notation 
 for tensor (or Kronecker) product of matrices, and we use I

S

to

denote an identity matrix whose rows and columns are indexed by elements of

the �nite set S. Thus the tensor product I

S


G denotes a block matrix consisting

of jSj copies of the matrix G on the main diagonal. The characteristic matrix of

a function f : S ! S

0

, where S and S

0

are �nite sets, is the jSj � jS

0

j matrix F ,

whose rows are indexed by S and whose columns are indexed by S

0

, such that

F

s;s

0

= 1 if s

0

= f(s) and such that F

s;s

0

= 0 otherwise.

Lemma 2. Let G be the in�nitesimal generator of a �nite-state CTMC M with

state set Q. Let h : Q ! S be a surjective function, let H be the jQj � jSj

characteristic matrix of the function h, and let L be the jQj�jSj�jQj characteristic

matrix of the function that takes q to (h(q); q). For � > 0, de�ne the block matrix

G

�

as follows:

G

�

=

0

@

I

S


G 0

�L G� �I

Q

1

A

Then G

�

is the generator of a CTMC with absorbing classes indexed by elements

of S. Let abs

�

(�) denote the S-indexed vector whose entries are the absorption

probabilities if the chain is started with initial distribution (0 �). Then �̂ =

lim

�!0

+
abs

�

(�) exists, and has the form �̂ = �̂H, where �̂ is a stationary vector

for M. Thus, for each s 2 S we have �̂(s) =

P

q2h

�1

(s)

�̂(q).

Proof. Omitted from this abstract. ut

3 Probabilistic Input/Output Automata

A probabilistic input/output automaton (PIOA) is a triple:

A = (E;Q; f�

e

: e 2 Eg)

where

1

:

1. E = E

in

[E

out

, where E

in

is a set of input actions and E

out

is a set of output

actions, such that E

in

\E

out

= ;.

2. Q is a �nite set of states.

3. For each e 2 E, �

e

: Q�Q ! [0;1). If e 2 E

in

, then we regard �

e

(q; q

0

) as

a transition probability. If e 2 E

out

, then we regard �

e

(q; q

0

) as a transition

rate. In accordance with this interpretation, we require that for all e 2 E

in

and q 2 Q the following stochastic condition holds:

X

q

0

2Q

�

e

(q; q

0

) = 1:

1

In our previous work, we have studied probabilistic I/O automata having internal

actions as well as input and output actions. In the present paper, however, we do

not consider internal actions.
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It will often be convenient to regard the functions �

e

as transition matrices whose

rows and columns are indexed by Q. The stochastic condition above may then

be seen as a condition on the row sums of these matrices. If A is a PIOA, then

the total output rate of a state q is de�ned to be the quantity

rt(q) =

X

e2E

out

X

q

0

2Q

�

e

(q; q

0

):

It represents the overall rate of occurrence of output actions from state q.

For the purposes of this abstract, we shall assume that if e 2 E

out

, then the

\diagonal" rate �

e

(q; q) is always zero. We will comment further on this issue in

the full version.

To each PIOA A = (E;Q; f�

e

: e 2 Eg) we associate a continuous-time

Markov chainM

out

(A) whose in�nitesimal generator is the matrix G de�ned as

follows:

G(q; q

0

) =

�

�rt(q); if q = q

0

P

e2E

out

�

e

(q; q

0

); otherwise:

This generator describes a stochastic process whose transitions from state q occur

with rate rt(q), such that with probability one each transition is associated with

the occurrence of a single output action e 2 E

out

. The selection between the

various output actions available from state q is the result of competition among

independent exponentially distributed random variables, each associated with a

distinct output action, such that the exponential distribution associated with

action e in state q has (rate) parameter

P

q

0

2Q

�

e

(q; q

0

). We call this Markov

chain the output process associated with the PIOA A.

A �nite collection fA

i

: i 2 Ig of probabilistic I/O automata, where A

i

=

(E

A

i

; Q

A

i

; f�

A

i

e

: e 2 E

i

g), is called compatible if for all i; j 2 I with i 6= j, we

have E

A

i

out

\ E

A

j

out

= ;. The composition of such a collection is a PIOA (E;Q; �)

where

{ E

out

=

S

i2I

E

A

i

out

and E

in

= (

S

i2I

E

A

i

out

) nE

out

.

{ The state set Q is the cartesian product

Q

i2I

Q

i

:

{ For each e 2 E, the transition matrix �

e

is the tensor (or Kronecker) product

N

i2I

�

A

i

e

where we adopt the convention that �

A

i

e

is an identity matrix if

e 62 E

A

i

.

One can verify using the above de�nition of composition, that if PIOA A is

the composition of the compatible collection fA

i

: i 2 Ig, then the output rate

of e 2 E

out

in state (q

i

: i 2 I) of A is precisely equal to the output rate of e

in A

i

for the unique i such that e 2 E

A

i

out

. In addition, the total output rate for

state (q

i

: i 2 I) of A is the sum over all i 2 I of the total output rate for state

q

i

in A

i

. The above de�nition of composition for PIOA therefore corresponds

to the intuitive idea that in a state (q

i

: i 2 I) of A the component automata

A

i

are in a \race" to control the next output action. Upon entering the state

(q

i

: i 2 I), each A

i

draws a random time from an exponential distribution

with mean 1=rt(q

i

). The component i that chooses the smallest time \wins"

the race and gets to select the next output action, say e 2 E

A

i

out

. A \losing"
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component j either does nothing, if e 62 E

A

j

in

, or else (if e 2 E

A

j

in

) it performs an

input transition that is synchronized with the output transition performed by

component i.

The above notion of composition was introduced for PIOA in [WSS94]. Sim-

ilar or identical notions of composition have also been de�ned and studied in

other literature on stochastic process algebras. Hillston [Hil94] compares the

merits of a number of such notions of composition that have appeared in the

context of work on the stochastic process algebras TIPP [GHR93] PEPA [Hil96],

MPA [Buc94], and MPA/EMPA [BDG98]. The use of tensor notation provides

a succinct way to de�ne composition of automata date back at least to Plateau

[Pla85] for stochastic automata.

4 \Alarm Clock" Construction on PIOA

In this section, we de�ne a construction on PIOA that corresponds to the CTMC

construction of Lemma 2. We call this construction the \alarm clock" construc-

tion, following the intuition set out in Section 1. The idea of the \alarm clock"

construction is as follows: given a PIOA A = (E;Q; f�

e

: e 2 Eg) and a surjective

function h : Q! S, where the set S is assumed to be disjoint from E, construct

a PIOA AC

�

(A; h) that behaves like A until an exponentially distributed random

\alarm" with rate � expires, at which time the image h(q) of of the state q of A

that was the current state at the time of the alarm is \frozen," and the system

takes a transition to an absorbing class of states determined by h(q). The system

continues to evolve after the alarm, but the \frozen" value h(q) is remembered

forever.

Formally, suppose A is a PIOA and h : Q ! S is a surjective function. Let

AC

�

(A; h) = (E; (S �Q) [Q; f�

e

: e 2 Eg), where E

in

= E

A

in

, E

out

= E

A

out

[ S,

and the transition matrices �

e

are de�ned in block form as follows:

{ For e 2 E:

�

e

=

0

@

I

S


 �

e

0

0 �

e

1

A

{ For e 2 S:

�

e

=

0

@

0 0

�H

e

0

1

A

where H

e

is the jQj � jSj � jQj matrix such that H

e

(q; (e; q)) = 1 whenever

h(q) = e, and all other entries of H

e

are zero.

Lemma 3. Given a PIOA A and a surjective function h : Q ! S, the output

process of the PIOA AC

�

(A; h) has the following for its in�nitesimal generator:

0

@

I

S


G 0

�H G� �I

Q

1

A
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where G is the in�nitesimal generator of the output process of A and H is the

jQj � jSj � jQj characteristic matrix of the function that takes q to (h(q); q).

Proof. Direct from the de�nition of output process and AC

�

(A; h). ut

Theorem 1. Let A = (E;Q; f�

e

: e 2 Eg) be a PIOA and let h : Q ! S be a

surjective function. Suppose further that the output process of A is irreducible,

so that a unique stationary distribution exists. Let � be an arbitrarily chosen

distribution for A, and for each � > 0 let abs

�

(�) denote the S-indexed vector of

absorption probabilities for AC

�

(A; h) when started with distribution (0 �). Then

�̂ = lim

�!0

+
abs

�

(�) exists, and the entries of �̂ are the steady-state probabilities

for M

out

(A) of the sets h

�1

(s) � Q.

Proof. Immediate from Lemma 2 and Lemma 3. ut

5 Compositional Calculation

Theorem 1 could be used directly on a PIOA A to calculate the full steady-state

distribution. However, this would require the explicit enumeration of the entire

state space of A in order to construct AC

�

(A; h). There would not be much point

in doing this, since we might just as well have calculated a stationary distribu-

tion for M

out

(A) directly without bothering with AC

�

(A; h) at all. However, in

case we are not interested in the full steady-state distribution but rather only

in certain kinds of partial information, then we can exploit the AC

�

(A; h) con-

struction to calculate steady-state probabilities. This can be done when the type

of partial information we are interested in is that which can be discerned by an

\observer" of A, which is a PIOA O that interacts with A simply by observing

what output actions A performs.

Formally, de�ne an observer for a PIOAA to be a PIOAO, such that E

O

out

= ;

and E

O

� E

A

. Note that if O is an observer for A, then O is automatically

compatible with A. The following Lemma says that if we are only interested

in the observer's component of the state, then an alarm clock construction on

the composite OjA can be accomplished by �rst performing an alarm clock

construction on O alone, and then composing the result with A.

Lemma 4. Let A be a PIOA. Let O be an observer for A, and let h : Q

OjA

!

Q

O

be the projection from states of OjA to states of O. Then we have the fol-

lowing isomorphism of PIOA:

AC

�

(OjA; h) ' AC

�

(O; id

Q

O
) j A:

Proof. Omitted from this abstract. ut

Lemma 5. Let A be a closed PIOA (i.e. E

A

in

= 0) and let h : Q

A

! S, where

S is a �nite set. Given a probability distribution � on Q

A

, the probability that

AC

�

(A; h) reaches absorbing class fsg�Q

A

when started with distribution (0 �)

equals the probability that AC

�

(A; h) performs output action s when started with

distribution (0 �).
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Proof. By inspection of the de�nition of AC

�

(A; h) it is easy to see that the set

of trajectories in which absorbing class fsg�Q

A

is reached is exactly the same

as the set of trajectories in which output action s is performed. ut

Theorem 2. Let A be a closed PIOA and let O be an observer for A, such that

the output process of AjO is irreducible. Let h : Q

OjA

! Q

O

denote the projec-

tion from states of OjA to states of O. For each � > 0, let abs

�

(�) denote the

probability that AC

�

(0; id

Q

0

) j A outputs s 2 Q

O

when started with distribution

�, where � is an arbitrary distribution that assigns zero probability mass to the

absorbing classes. Then � = lim

�!0

+
abs

�

(�) exists, and the entries of � are the

steady-state probabilities of the sets h

�1

(s) � Q

O

�Q

A

.

Proof. Immediate from Theorem 1, Lemma 4, and Lemma 5. ut

6 An Example

Theorem 2 shows that steady-state probabilities for sets of states of OjA can in

principle be calculated as limits as �! 0

+

of probabilities that certain outputs

are produced by AC

�

(0; id

Q

0

) j A. In previous work [SS98,SP99], we have given

a method for calculating such probabilities which has the feature of being com-

positional: if A is a composite PIOA A

1

jA

2

j : : : jA

n

then the probability that the

PIOA AC

�

(0; id

Q

0

) j A produces a given output can be obtained by treating,

in sequence, �rst the observer plus alarm clock AC

�

(O; id

Q

O

), then the PIOA

A

1

, then the PIOA A

2

, etc. until �nally A

n

is treated. As each component is

treated, a minimization step is performed in order to reduce the size of the data

that need to be carried along to the next step.

As an example of the application of the above technique, we now use it

to compute certain steady-state characteristics of a simple resource allocation

protocol.

6.1 Description

Consider a system in which N user processes compete for exclusive access to a

single resource. In order to ensure mutual exclusion, an additional arbiter process

is introduced to handle user requests and manage the allocation of the resource.

When user i requires access to the resource, it executes a handshake protocol

in which it �rst performs a req

i

action to inform the arbiter of its desire to

use the resource, and then it awaits a corresponding grant

i

response from the

arbiter. Once user i has received the grant

i

response from the arbiter, user i has

exclusive access to the resource until it explicitly relinquishes it by performing

a rel

i

action. Upon receiving the rel

i

action, the arbiter resets the protocol by

performing a reset action.

The arbiter works as follows. If a req

i

arrives when the resource is free, then

the resource is tentatively allocated to user i and a grant

i

action is performed.

By performing the grant

i

action, the arbiter commits to the allocation. If re-

quests arrive from other users after the arbiter has issued the grant

i

, then these

9



additional requests are ignored. Later, once the user with the resource has re-

linquished it via a rel

i

action, the arbiter will perform a reset, at which point

the protocol reverts to its initial state and any user still interested in the re-

source must re-issue its request. Between the arrival of a req

i

until the time a

corresponding grant

i

is issued, there is a period of ambiguity concerning what

happens if other requests arrive at the arbiter. In the version of the protocol we

consider, the arbiter in fact commits to the allocation as soon as the �rst req

i

arrives, and ignores any other req

j

that arrive in the period between req

i

and

the subsequent grant

i

.

The full version of the paper will include state diagrams for the user and the

arbiter. For brevity, we have omitted these from this abstract.

free

++

req

i

inuse

jj

reset

gg

req

i

;rel

i

;grant

i

Fig. 1. Observer for Calculating Steady-State Probability of Resource Free

6.2 Analysis

We used the techniques described in this paper to analyze the resource alloca-

tion protocol for various numbers of users N . For a given value of N , each user

process has 5 states and the arbiter has 2N +3 states, so that the total number

of global states of an N -user system is 5

N

� (2N+3). The analysis algorithm was

implemented in the programming language Standard ML, and all the computa-

tion times reported below were measured using the Standard ML of New Jersey

system version 110.0.7 running on a 1.8GHz Xeon processor.

Table 1 shows the results of computing the probability of eventual occur-

rence of an err or err

i

action if the protocol is started with the arbiter and all

users in the idle state. This calculation is not a steady-state calculation, and

Table 1. Probability of Protocol Error

N GlobalStates Error Prob. Time (sec.)

1 25 0 0.013

2 175 0 0.027

3 1125 0 0.061

4 6875 0 0.103

5 40625 0 0.162

10 224564375 0 0.821

thus does not require the alarm clock construction described this paper. Instead
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the calculation was performed using the compositional methods detailed in our

earlier papers. Note that the impossibility of a protocol error can be established

extremely quickly, and that the compositional technique clearly does not require

the enumeration of the entire global state space to obtain the answer.

Table 2 shows the results of computing the steady-state probability of the

resource being free, for the immediate-allocation version of the algorithm. This

was accomplished via the alarm clock construction using the two-state observer

whose transition diagram is shown in Figure 1. This observer considers the re-

source as not free as soon as it has been tentatively allocated in response to a

request. The resource remains not free until the next reset action occurs. Our im-

plementation produces exact results (not 
oating point approximations), which

are shown in the table as fractions. The results appear to follow the formula

1=(3N + 1), which is intuitively justi�able on the basis of symmetry consid-

erations (though we have not established this rigorously). The column labeled

\Red. Dim." gives the dimension of the reduced system of equations that is

produced after all components have been treated.

Table 2. Steady-State Probability of Resource Free

N Global States Red. Dim. Free Prob. Time (sec.)

1 25 5 1/4 0.049

2 175 13 1/7 0.154

3 1125 33 1/10 0.247

4 6875 81 1/13 2.835

5 40625 193 1/16 3744.

The N = 5 case is a good illustration of the problems of practicality of the

technique, at least in the current implementation. The program very quickly

reduces the problem of calculating the steady-state probability for the 40625-

state system to the problem of solving a system of 193 linear equations in 193

unknowns. However, this system of equations is then solved in the �eld of rational

functions over the unknown alarm clock rate �, to obtain a symbolic expression

for the dependence on � of the probability of the resource being free at the time

the alarm goes o�. The result is the following rational function:

�

3

+ 3�

2

+ 3�+ 1

�

3

+ 8�

2

+ 18�+ 16

whose value at � = 0 is the steady-state probability 1=16. Nearly all the time is

spent in this solution process, which is performed using exact rational arithmetic

for the coe�cients. Obviously, there is nothing \di�cult" about the resulting

function. However, it is the blowup in the amount of precision required for the

coe�cients in the intermediate steps that causes the calculation to take so long.

There are at least three possibilities for improving the practicality of the

technique. One would be to discover a way in which the arithmetic required to

11



solve the �nal system of equations could be carried out in 
oating point arith-

metic, rather than exact rational arithmetic. Note that one cannot naively re-

place rational coe�cients by 
oating point values, since the approximation leads

to ambiguities concerning the degree of the rational functions being calculated.

So some theoretical justi�cation for such a replacement would be required. A sec-

ond possibility for improving the practicality would be to �nd a way to compute

the limiting value as � ! 0 of the rational function r(�) that is the solution to

the �nal system of equations, without having to actually determine the function

completely. This would reduce solving equations in the �eld of rational functions

to a calculation carried out in the coe�cient �eld, and would likely result in a

signi�cant reduction in computation time.

A third possibility for reducing the computation time is to approximate the

limit of r(�) as � ! 0 by computing r(�

i

) for a speci�c sequence of values �

i

that converge to 0. Although some further theory is required here to determine

the error that would result from a particular choice of �, this theory might

not be too di�cult to develop, since rational functions have simple convergence

behavior. Table 3 gives an idea of what happens when we try this approach. The

calculations are all performed using exact arithmetic, but the (scalar) solution

of the �nal 193-dimensional system is performed in 
oating point, using LU

decomposition. Each of the calculations took roughly 4:5 seconds to perform.

Table 3. Approximating Steady-State Probability of Resource Free (N = 5)

� Free Prob.

1 0.186046511628

1/10 0.0744365527655

1/100 0.0636742890541

1/1000 0.0626172118867

1/10000 0.0625117189941

1/100000 0.0625011718817

1/1000000 0.0625001171735

This technique seems to obtain good approximations to the answer fairly

quickly, at least for N = 5. The same technique applied to the N = 10 case

with � = 1=1000000 takes several hours to reduce the original model, which

has nearly 225 million global states, to a system of 11265 equations. However,

our LU-decomposition-based solution procedure got bogged down in solving this

system, probably due to \�ll-in" that a�ected the originally sparse matrix during

the solution process. An iterative solution procedure would likely improve the

situation.

It is also possible to use the alarm clock construction to compute other steady

state parameters besides the probability of being in a particular set of states. For

example, we might be interested in the expected delay from the time a user �rst

issues a request from its idle state, until the time the matching grant is issued,

assuming that the system is started in steady state. This can be done by using

12



an alarm clock construction as follows: \wait for the alarm to go o�, then wait

for the �rst user request, wait for the matching grant, and tally the expected

time between the request and the grant." As the alarm clock rate � tends to

zero, the result approaches the steady state value. Table 4 shows the results of

using this approach to compute the exact steady-state expected delay from the

time a user issues a request from its idle state until the time the matching grant

is issued. Table 5 shows the results of an approximate calculation of the same

quantities. A full explanation and justi�cation for the speci�c construction used

to perform these calculations is outside the scope of this paper.

Table 4. Exact Steady-State Request-to-Grant Expected Delay

N Global States Red. Dim. Exp. Delay. Time (sec.)

1 25 5 1 0.147

2 175 13 241/56 0.945

3 1125 33 297/40 8.855

4 6875 81 1091/104 285.416

Table 5. Approx. Steady-State Request-to-Grant Expected Delay (� = 1=1000000)

N Global States Red. Dim. Exp. Delay. Time (sec.)

1 25 5 0.9999999999 0.188

2 175 13 4.3035717430 0.802

3 1125 33 7.4250004769 3.520

4 6875 81 10.4903851886 16.725

5 40625 193 13.5312506364 87.273

7 Conclusion

We have described a method for converting the problem of computing steady-

state probabilities of a CTMC into the problem of computing absorption prob-

abilities for a related CTMC. This \alarm-clock" construction permits compo-

sitional techniques for computing absorption probabilities that we have previ-

ously described for probabilistic I/O automata to be used for computing certain

steady-state quantities as well. There are signi�cant impediments to the prac-

ticality of the technique if exact results are required, but with some additional

theoretical work it seems likely that it could be used to produce approximate

results.
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