
Formally De�ning Debuggers:

A Comparison of Three Approaches

Karen L. Bernstein, Eugene W. Stark

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400 USA

�

Abstract

Although there is a large body of literature on formal de�nitions of programming

languages, relatively little work has been done in applying formal techniques to de�ning

debuggers. Natural operational semantics, denotational semantics and transitional

operational semantics are all proven techniques for formally de�ning programming

languages. In this paper we present techniques for formally de�ning debuggers based

on each of these three styles of de�nitions. We will investigate each style of de�nition

by demonstrating how a simple debugger might be de�ned in each framework.

1 Introduction

According to a traditional view, a debugger is a tool that allows a programmer to get

information about a program by observing the evaluation of the program according to the

implementation. From a more general perspective, a debugger can be viewed as a tool that

allows the programmer to gain additional insight into a program by observing the behavior

of the program according to some well-de�ned operational model. This more general view

of a debugger is attractive because it separates the issues related to describing a debugger

from the issues related to its implementation. In this paper, we explore some of these issues

related to de�ning a debugger according to an abstract operational model by comparing

three possible approaches to formally de�ning debuggers.

One natural approach to de�ning a debugger is to extend the de�nition of the program-

ming language to include the necessary debugging information. Each of the three de�nitions

described in this paper takes a well established semantic formalism for programming lan-

guages and extends it in order to de�ne a debugger. In his PhD dissertation, Amir Kishon

used continuation-passing style denotational semantics as a framework for automatically gen-

erating debugging tools [Kis92]. Fabio da Silva, in his thesis, extended natural operational

�

Research supported in part by NSF grants CCR-9320846 and CCR-8902215

1

2

semantics to establish a framework for proving compilers and debuggers correct [dS91]. In

a previous work, the authors proposed transitional operational semantics as a formalism for

designing novel debugging tools [BS95]. In order to compare the three approaches, we sketch

how a simple debugger might be de�ned in each formalism.

Since we are primarily interested in comparing the semantic frameworks, we will de�ne

a very simple debugger for a very simple programming language. De�nitions of more so-

phisticated debuggers are available in each of the original works [Kis92, dS91, BS95]. For

our programming language, we use a strict functional language and for our debugger, we

de�ne a stepper that allows the user to specify the number of steps that the program should

execute. For our analysis, we are interested in comparing how in each case: (1) the program-

ming language is de�ned, (2) the debugger is de�ned and (3) the relationship between the

programming language de�nition and the debugger de�nition.

For the purpose of comparing di�erent semantic frameworks, we will consider a strict

functional language. The abstract syntax of our language is:

k 2 Constants a 2 Identi�ers

e 2 Expressions ::= k j a j (fn a => e) j (e

1

e

2

)

This a simple language, where the only programming language constructs are function de�-

nition and application. Elements of the set of constants are denoted by the letter k. We can

think of the set of constants to simply be the set of integers. Elements of the set of identi�ers

will be denoted by the letter a. Expressions in the programming language can take several

forms and will be denoted by the letter e. Any constant or identi�er is a valid expression. A

function de�nition of the form (fn a => e) is a valid expression and it denotes the function

that maps each value v to the term e[v=a] (e with v substituted for a). An application of the

form (e

1

e

2

) is a valid expression and it denotes the application of the expression e

1

to e

2

.

The application (e

1

e

2

) is only well-de�ned in the case that e

1

is a function de�nition

and e

2

is fully evaluated (is either a constant or a function de�nition). This de�nition of

application corresponds to call-by-value semantics. When the semantic framework allows

us to specify the order of evaluation, we would like to specify left-to-right evaluation for

applications. That is, �rst the operator e

1

evaluates fully, then the operand e

2

evaluates

fully and �nally the fully evaluated operator is applied to the fully evaluated operand.

In order to see how a simple expression in the programming language will evaluate, we

will consider the expression, ((fn a => 1) ((fn b => b) 2)). This simple expression is of the

form, (e

1

(e

2

e

3

)), where e

1

= (fn a => 1), e

2

= (fn b => b) and e

3

= 2. The expression

e

1

= (fn a => 1) corresponds to the constant function that always returns the value 1 and

the expression e

2

corresponds to the identity function that always returns the value to which

it is applied. Therefore this expression should evaluate in two steps to the �nal result 1.

((fn a => 1) ((fn b => b) 2)) �! ((fn a => 1) 2) �! 1

In the evaluation of this expression, �rst the identity function is applied to the value 2

yielding the value 2, then the constant function is applied to the value 2 yielding the value

1.

3

The outline of the paper is as follows. Section 2 de�nes the debugger in denotational

semantics. Section 3 de�nes the debugger in natural operational semantics. Section 4 de�nes

the debugger in transitional operational semantics. In order to compare the three formalisms,

in each case we will �rst give a formal de�nition for our simple programming language

and we will look at how a simple programming expression would evaluate according to the

language de�nition. Next, we will de�ne a simple debugger that allows the user to issue a

command that the program being debugged should evaluate for some requested number of

steps. Finally, for each formalism we will look at the properties of the de�nitions that are

important in the framework. Section 4 concludes the paper by commenting on the issues

that seem fundamental to de�ning debuggers.

2 Denotational Semantics

In denotational semantics, a correspondence is de�ned between expressions in the program-

ming language and functions in a mathematical domain. Denotational semantics is a very

elegant and concise way to de�ne a programming language. The di�culty in de�ning debug-

gers in this framework is that there is no explicit notion of an evaluation step. In their work,

Kishon, Hudak and Consel show how continuation-passing style denotational semantics can

be viewed as introducing an explicit notion of an evaluation step into the de�nition of the

programming language [KHC91]. Kishon et al. present a monitoring semantics as an exten-

sion to the continuation-passing denotational semantics for a language, where monitors are

tools such as debuggers, pro�lers, and tracers that can view but not modify the execution of

a program. Kishon et al. are then able to use partial evaluation techniques to automatically

generate program execution monitors.

2.1 Programming language de�nition

In denotational semantics each expression in the programming language is mapped directly

to its meaning (denotation) [Sch86]. For this programming language, the denotable values

are constants, identi�ers, functions and ?, where ? is the value of an expression that never

terminates. This mapping is done by means of a valuation function, E, which returns the cor-

responding denotation for any programming language expression with respect to the current

environment (a function from identi�er names to denotable values). In continuation-passing

denotational semantics, the valuation function has an additional argument, the continuation

function. A continuation is a function that takes an intermediate value as an argument and

returns the �nal result of the program. Intuitively, a continuation is the \remainder of the

program."

We will use [] to designate the environment that maps every identi�er to ? and �[a 7!

k] to designate the environment that maps the identi�er a to the denotable value k and

otherwise behaves like �. Denotations are assigned to constants by means of a function K,

which maps each constant to its value in the domain. We will use id to designate the identity

4

continuation: that is, the continuation function that returns whatever value is passed as an

argument to the continuation.

The de�nition of our programming language is given in two parts. First we describe the

semantic algebras, which de�ne the semantic objects that are the targets of the valuation

function.

Semantic Algebras:

k 2 Constant-values = Int + ...

v 2 Denotable-values = Constant-values + Function-values

� 2 Environments = Identi�ers ! Denotable-values

f 2 Function-values = Denotable-values ! Continuations ! Denotable-values

� 2 Continuations = Denotable-values ! Denotable-values

The semantic algebras include a set of constant values that contains at least the set of

the integers. The denotable values consist of the constant values and the function values.

An environment is a function from identi�er names to denotable values. In this framework,

functions are slightly unusual. Rather than a function value simply being a function from

denotable values to denotable values, instead a function takes an additional argument that

corresponds to the continuation. Intuitively the continuation describes how to take the

value output by the function and produce the �nal result of the whole program. Typically,

continuations are used in denotational semantics to describe complicated control constructs;

here they are used to obtain a notion of an evaluation step.

We can now de�ne the valuation function (E):

Valuation Function:

E: Expressions ! Environments ! Continuations ! Denotable-values

E [[a]] � � = �(�(a))

E [[k]] � � = �(K(k))

E [[(fn a => e)]] � � = �(�x:(E [[e]] �[a 7! x]))

E [[e

1

e

2

]] � � = E [[e

1

]] � f�x

1

:E [[e

2

]] � f�x

2

:(x

1

x

2

)�gg

The valuation function takes three arguments (a programming language expression, an

environment and a continuation function) and returns the corresponding denotation. The

�rst rule says, to evaluate the identi�er a in environment � with continuation �, �rst apply

the environment function � to the identi�er a to determine the value of a in the environment

� and then apply the continuation � to the result to get the �nal value. Similarly, the second

rule says, to evaluate the constant k in environment � with continuation �, �rst apply K to

the constant to determine its value and then apply the continuation � to the result to get

the �nal value. The third rule says to evaluate a function de�nition of the form (fn a => e)

in environment � with continuation �, apply the continuation � to the function value that

accepts an argument x and returns the value denoted (according to the valuation function

E) by the expression e in environment �[x 7! a]. The last rule says to �nd the meaning of

5

an application of the form (e

1

e

2

) in environment � with continuation �, �rst determine the

function value denoted by the expression e

1

in environment �, then determine the argument

value denoted by the the expression e

2

in environment �, apply the function to its argument

and then �nally apply the continuation � to the result. Notice that since we want to de�ne

left-to-right evaluation, we evaluate the operator of the application before we evaluate the

operand.

We can view the continuation as a stack of functions that indicates what remains to be

done in the evaluation of the programming language expression. The series of transitions

that demonstrates the evaluation of our example programming language expression are given

in �gure 1. In step 1, the evaluation starts with our programming language expression

in the empty environment with identity continuation (no other expressions are currently

on the stack). In step 2, the application is expanded. The current expression (the top

expression on the stack) is now the operator for the application; the second function on the

stack corresponds to the operand for the application; and the third function on the stack

corresponds to the actual application of the operator to the operand. In step 3, the function

de�nition (fn a => 1) is transformed into the function it denotes. In step 4, the result

is popped o� the stack and substituted for x

2

in the expressions in the stack. In step 5,

the current application is expanded, adding new expressions to the stack. The evaluation

continues in this manner until step 14, where the �nal result, 1, is determined.

2.2 Debugger de�nition

In order to de�ne the debugger, the syntax of the program is \tagged" with annotations to

indicate points of interest to the debugger. This information would usually be supplied by

the programming environment. For our sample programming language expression, the tags

are indicated below. In this case, the only tag is fappg and it indicates the location of an

application.

(fappg(fn a => 1) (fappg(fn b => b) 2))

In this approach the debugger is de�ned by introducing a monitoring state and a mon-

itoring function. The monitoring state contains the additional state information necessary

for de�ning the debugger. The monitoring function de�nes how the monitoring state should

be updated as the evaluation progresses. The monitoring function takes four parameters

(the current annotation, the current expression, the current environment and the current

monitoring state) and returns the new monitoring state. Since our example debugger simply

counts steps, we only need to store a natural number in the monitoring state. The monitor-

ing function is de�ned as follows.

Monitoring function:

M

E

: Annotations!Expressions! Environments!Monitoring States!Monitoring States

M

E

[app] [[e]] � n = n+ 1

6

Expression

step 1 E [[((fn a => 1) ((fn b => b) 2))]] []

step 2 E [[(fn a => 1)]] []

�x

2

:E [[((fn b => b) 2)]] []

�x

1

:(x

2

x

1

)

step 3 �x:E [[1]] [a 7! x]

�x

2

:E [[((fn b => b) 2)]] []

�x

1

:(x

2

x

1

)

step 4 E [[((fn b => b) 2)]] []

�x

1

:((�x:E [[1]] [a 7! x]) x

1

)

step 5 E [[(fn b => b)]] []

�x

3

:E [[2]] []

�x

2

:(x

3

x

2

)

�x

1

:((�x:E [[1]] [a 7! x]) x

1

)

step 6 �x:E [[b]] [b 7! x]

�x

3

:E [[2]] []

�x

2

:(x

3

x

2

)

�x

1

:((�x:E [[1]] [a 7! x]) x

1

)

step 7 E [[2]] []

�x

2

:((�x:E [[b]] [b 7! x]) x

2

)

�x

1

:((�x:E [[1]] [a 7! x]) x

1

)

step 8 2

�x

2

:((�x:E [[b]] [b 7! x]) x

2

)

�x

1

:((�x:E [[1]] [a 7! x]) x

1

)

step 9 ((�x:E [[b]] [b 7! x]) 2)

�x

1

:((�x:E [[1]] [a 7! x]) x

1

)

step 10 E [[b]] [b 7! 2]

�x

1

:((�x:E [[1]] [a 7! x]) x

1

)

step 11 2

�x

1

:((�x:E [[1]] [a 7! x]) x

1

)

step 12 ((�x:E [[1]] [a 7! x]) 2)

step 13 E [[1]] [a 7! 2]

step 14 1

Figure 1: Evaluation sequence for de�nition in continuation-passing denotational semantics

7

The de�nition simply says, if the current evaluation step is an application (is annotated

with \app") then increment the counter in the monitoring state.

2.3 Properties of de�nitions

The denotational style of de�nition has several very nice properties. Foremost, this style

of de�nition in conjunction with partial evaluation techniques allows debugging tools to

be automatically generated. This style of de�nition is also widely used in programming

language semantics, so existing programming language de�nitions can be used to generate

debuggers. In addition, the formalism allows a variety of monitoring semantics to be de�ned

by parameterizing language speci�cations with respect to monitor speci�cations.

Two key properties of the debugger are guaranteed with style of de�nition: (1) the

monitoring semantics cannot change the semantics of original programming language, and

(2) the monitoring semantics are compositional. Both of these properties seem important to

debugger de�nitions.

We see in the sample evaluation sequence that the formalism introduces extra evaluation

steps that are not of interest to the programmer. This is compensated for by means of the

program annotations, but for a more complicated debugger de�nition the exact e�ect of the

program annotations could be di�cult to understand.

3 Natural Operational Semantics

Natural operational semantics uses proof rules to de�ne the values to which programming

language expressions evaluate. Natural semantics is widely used for de�ning programming

languages, because de�nitions in this form can be very intuitive and concise. In addition, it

provides a framework for proving interesting properties of the programming language and as

well as properties of programs written in the language. In his dissertation, da Silva uses a

variant of natural semantics to formally de�ne debuggers. His principal goal was to construct

a framework for proving debuggers correct. His framework allows the formal speci�cation

of a debugger and provides methods for proving the implementation correct with respect to

the speci�cation.

3.1 Programming language de�nition

In natural operational semantics a programming language is de�ned by inference rules of the

form:

e

1

+ v

1

::: e

n

+ v

n

e + v

The expressions on top of the bar are the premises and the expression on the bottom is the

conclusion. A rule of this form can be read, \if the expression e

1

evaluates to the value v

1

and ... and the expression e

n

evaluates to the value v

n

then the expression e evaluates to

the value v." The following three such rules de�ne our programming language:

8

k + k (nat1) (fn a => e) + (fn a => e) (nat2)

e

1

+ (fn a => e

0

1

) e

2

+ v

2

e

0

1

[v

2

=a] + v

(e

1

e

2

) + v

(nat3)

The �rst two rules say that constants and function de�nitions all evaluate to themselves;

that is, they are fully evaluated. The last rule says, if the expression e

1

evaluates to the

function de�nition (fn a => e

0

1

) and the expression e

2

evaluates to the value v

2

and the

expression e

0

1

with v

2

substituted for a evaluates to the value v, then the application with

the expression e

1

applied to the expression e

2

evaluates to the value v.

The proof tree below shows how the given rules can be used to prove that the function

(fn a => 1) ((fn b => b) 2) evaluates to the value 1.

(nat2)

(fn a => 1) + (fn a => 1)

(nat2)

(fn b => b) + (fn b => b)

(nat1)

2 + 2

(nat1)

b[2=b] + 2

(fn b => b) (2) + 2

(nat1)

1[2=a] + 1

(fn a => 1) ((fn b => b) (2)) + 1

In order to be able to de�ne our debugger with respect to this de�nition, we need some

way to extract a notion of an evaluation step. Da Silva introduces the notion of an evaluation

step by proposing an alternate reading of the rules of the de�nition. He treats the proof

rules as rewrite rules that specify the evaluation sequence. In da Silva's treatment, the rule

(nat3) can be read, \In order to evaluate the expression e1 applied to expression e2: (1) �rst

evaluate e

1

to an expression of the form (fn a => e

0

1

), (2) next evaluate e

2

and call the result

v

2

, (3) �nally evaluate the expression e

0

1

with v

2

substituted for a." With this interpretation

of the rules, the evaluation state can be written as a stack of evaluation sequences that are

yet to be performed. The proof rules are used to replace the expressions on the stack by

their premises.

The evaluation sequence for our example programming language expression is shown

in �gure 2. In step 1, at the start of the evaluation, our goal is to �nd the value v to

which the expression ((fn a => 1) ((fn b => b) 2)) evaluates. In step 2, we expand the

application according to the proof rule for application. In this case, if (fn a => 1) evaluates

to (fn a => e

1

) and ((fn b => b) 2) evaluates to v

1

then e

1

with v

1

substituted for a

evaluates to v. In step 3, we pop (fn a => 1) + (fn a => e

1

) o� the stack and substitute 1

for e

1

in the remaining goals. The remaining evaluation steps proceed in a similar manner.

Each evaluation step either: (1) puts new terms on the stack by rewriting according to

the proof rules or, (2) substitutes values for variable names based on the values derived by

applying axioms. In the last evaluation step, we have evaluated all the goals and all that

remains is the result that v does in fact evaluate to the �nal result 1.

The method described here for treating the proof rules as rewrite rules only works if the

proof rules are in certain formats. Da Silva de�nes a restricted form of proof rules which he

calls rational semantics for which this technique works.

9

step 1 (fn a => 1) ((fn b => b) 2) + v

step 2 (fn a => 1) + (fn a => e

1

)

((fn b => b) 2) + v

1

e

1

[v

1

=a] + v

step 3 ((fn b => b) 2) + v

1

1[v

1

=a] + v

step 4 (fn b => b) + (fn b => e

2

)

2 + v

2

e

2

[v

2

=b] + v

1

1[v

1

=a] + v

step 5 2 + v

2

b[v

2

=b] + v

1

1[v

1

=a] + v

step 6 b[2=b] + v

1

1[v

1

=a] + v

step 7 1[2=a] + v

Figure 2: Evaluation sequence for de�nition in natural semantics

3.2 Debugger de�nition

In order to de�ne the debugger, da Silva introduces the notion of an evaluation history,

which is sequence of past evaluation states. In addition, the program state information is

augmented with information about the state of the debugger. The debugger is speci�ed

using a functional language that acts upon the evaluation histories and debugging states.

One complication with the evaluation sequence as de�ned by da Silva's method is that

not all of the evaluation steps are of interest to us; some steps are simply an artifact of the

rewrite rules. For example, we are not really interested in steps 2 and 4 in �gure 2, since

they simply correspond to the expansion of the application. In order to get around this

issue, da Silva provides a facility for de�ning predicates that allows the debugger de�nition

to skip the steps that are not really of interest. We will assume the de�nition of the predicate

\noapp" which is true whenever the next evaluation step in the evaluation history is not the

expansion of an application. The debugger can now be de�ned as follows:

fun step (h; n) = if n > 0 then case next(h) of

h1) if noapp(h1; st) then step(h1; n� 1) else step(h1; n)

The debugger de�nition above recursively de�nes the the debugger command step(h; n)

as follows. If there are still more evaluation steps to be done (n > 0) then do the following.

If the current evaluation step is not the expansion of an application, evaluate for another

n� 1 steps (call step(h1; n� 1)), otherwise evaluate for another n steps (call step(h1; n)).

10

3.3 Properties of de�nitions

Da Silva identi�ed several important requirements for a debugger: (1) a debugger must be

robust, that is all debugging commands must evaluate to some result at every debugging

state; (2) at every state there must be a debugging command that advances the evaluation;

and (3) the debugging states must be consistent with the evaluation states according to the

semantics of the programming language.

An important issue in proving debuggers correct is �nding a way to decide when two

debuggers are equivalent. The evaluation steps that are introduced as an artifact of the

semantic framework are an impediment to determining whether two programs are equivalent.

Da Silva gets around this by de�ning a signature that determines which evaluation steps are

visible and which should be disregarded. Two debugger speci�cations are then equivalent if

exhibit equivalent behavior with respect to \visible" evaluation steps.

It seems that there are several aspects to this semantic formalism that could make it hard

to formally prove properties. First, the programming language for de�ning the debuggers

is relatively sophisticated and it would require quite a bit of e�ort to prove properties of

speci�cations written in the language. Second, the extra evaluation steps introduced by the

application of the rewriting rules, introduce quite a bit of complexity into the formalism. This

is an issue both in de�ning the debugger and in de�ning the equivalence between debuggers.

4 Transitional Operational Semantics

In transitional operational semantics the evaluation of a programming language expression

is de�ned in terms of explicit incremental evaluation steps. This formalism has been used

widely for describing interactive systems [Mil89], but has been less popular for de�ning

sequential programming languages. In a previous paper we showed how this semantic for-

malism could be used to de�ne novel debuggers [BS95]. We chose transitional operational

semantics because it provides an intuitive notion of an evaluation step and it is convenient

for describing the interaction between both the user and the debugger and the debugger and

the programming language.

4.1 Programming language de�nition

In the de�nition of the programming language the unlabeled transitions correspond to our

usual notion of an evaluation step and the labeled transitions provide other necessary infor-

mation. The de�nition for the unlabeled transitions is shown below.

The �rst rule says that if the expression e

1

can do an evaluation step and become the

expression e

0

1

, then the application (e

1

e

2

) can take an evaluation step and become the

application (e

0

1

e

2

). The second rule says if the expression e

2

can take an evaluation step and

become the expression e

0

2

, then the application ((fn a => e

1

) e

2

) can take an evaluation step

and become the application ((fn a => e

1

) e

0

2

). Notice that in the second rule, the operator

of the application is required to be of the form (fn a => e). Thus, these rules de�ne

11

left-to-right evaluation, since the operator must evaluate completely before the operand can

evaluate. The third rule says, if e with the value v substituted for a is e

0

then the function

de�nition (fn a => e) applied the value v can take an evaluation step and become e

0

.

e

1

�! e

0

1

(e

1

e

2

) �! (e

0

1

e

2

)

(tr1)

e

2

�! e

0

2

((fn a => e

1

) e

2

) �! ((fn a => e

1

) e

0

2

)

(tr2)

e

[v=a]

�! e

0

((fn a => e) v) �! e

0

(tr3)

In addition to the evaluation rules above, our de�nition includes the following rules for

de�ning the valid substitution transitions (transitions labeled with [e=a]).

k

[e=a]

�! k (sub1) a

[e=a]

�! e (sub2)

b 6= a

b

[e=a]

�! b

(sub3)

e

1

[e=a]

�! e

0

1

e

2

[e=a]

�! e

0

2

e

1

e

2

[e=a]

�! e

0

1

e

0

2

(sub4)

e

2

[e=a]

�! e

0

2

(fn b => e

2

)

[e=a]

�! (fn b => e

0

2

)

(sub5)

(fn a => e

2

)

[e=a]

�! (fn a => e

2

) (sub6)

The �rst rule says, the constant k with e substituted for a is k. The second rule says,

the identi�er a with e substituted for a is e. The remaining rules can be read in a similar

manner.

Using this programming language de�nition, the proof trees for the two evaluation steps

necessary to evaluate our sample programming expression are given in �gure 3. Notice that

in this formalism, no extra evaluation steps are introduced. In the �rst evaluation step,

(fn a => a) is applied to 2, yielding the value 2. In the second evaluation step, (fn a => 1)

is applied to 2 yielding 1.

4.2 Debugger de�nition

For our transition-style semantics, the debugging state he; ni contains two parts: e, the

current programming language state (a programming language expression) and n, a counter.

We also introduce the predecessor function pred. The abstract syntax for our debugging

language is as follows:

n 2 Natural Numbers e 2 Expression d 2 Debugging States ::= he; ni j pred(n)

In our formalism, we de�ne the debugger as a set of rules \on top" of the programming

language de�nition. We distinguish transitions in the debugging language from transitions

in the programming language by using a double arrow in the debugging transitions.

12

a

[2=a]

�! 2

(sub2)

((fn a => a) 2) �! 2

(tr3)

((fn a => 1) ((fn a => a) 2)) �! ((fn a => 1) 2)

(tr2)

1

[2=a]

�! 1

(sub1)

((fn a => 1) 2) �! 1

(tr3)

Figure 3: Evaluation sequence for de�nition in transitional operational semantics

pred(n) =) n� 1 (where n > 0)

e �! e

0

pred(n) =) n

0

he; ni =) he

0

; n

0

i

The �rst rule actually de�nes an in�nite set of rules. It says every for every natural

number n greater than zero, pred(n) can do a transition and become n� 1. The second rule

says that if the programming language expression e can do an evaluation step and become

e

0

and the counter pred(n) can do an evaluation step and become n

0

then the debugging

expression he; ni can do an evaluation step and become he

0

; n

0

i. If the initial debugging state

is he; ni, then the expression will evaluate for exactly n steps yielding the debugging state

he

0

; 0i, where e

0

corresponds exactly to the expression that results when e evaluates for n

steps according to the programming language de�nition.

This debugger de�nition is attractive in that is very simple. It captures our intuitive

notion of how a debugger could interact with the execution of a program. As we show in

[BS95] this formalism also allows us to prove some desirable properties of the debugger.

4.3 Properties of de�nitions

Rules de�ned in our formalism have several nice properties, (1) the debugger de�nition does

not change the meaning of the original programming language, (2) the debugging states have

well-de�ned interaction with the programming language, and (3) there is an intuitive and

well-de�ned notion of an evaluation step.

The main di�culty in de�ning the debugger in this style is that traditionally, transition-

style semantics has not been popular for de�ning sequential programming languages. As

such, there are not many existing de�nitions in this format and the issues in proving prop-

erties of de�nitions in this format are less well understood. However, other researchers have

recently also started using this formalism, especially for dealing with issues that introduce

interaction into a programming language [Gor95, Jef95]. As this research develops, it should

become easier to construct the necessary programming language de�nitions.

13

The other issue is that it still remains to see how our de�nition can be used as the basis

of an implementation. Recent research has shown how source code transformations can be

used e�ectively to implement debuggers [TA90, Spa94]. We are currently working on using

this implementation technique to develop an implementation based on our style of formal

de�nition.

5 Conclusions

In this paper we compared three di�erent approaches to de�ning a simple debugger for a

functional programming language. From these de�nitions, we can see some of issues that

seem fundamental to de�ning debuggers. All three de�nitions had two parts: �rst an abstract

operational model for the programming language was de�ned; then the debugger was de�ned

with respect to that operational model. In order for a debugger to be well-de�ned it seems

necessary to at least consider the following three issues:

� the interaction between the debugger and the user,

� the operational behavior of the debugger itself,

� and the interaction between the debugger and the programming language.

Even though our example debugger in this paper was very simple, it seems that some of

these issues are important for any formal de�nition of a debugger.

The three approaches were di�erent in the properties that were identi�ed as important

for the debugger. Some of the properties that seem pertinent to any debugger are: (1) every

debugging command must evaluate to some result at every debugging state; (2) there should

be a well de�ned relationship between the debugging and programming language states; (3)

the debugger de�nition should not change the semantics of the original programming lan-

guage; and (4) debugger de�nitions should be compositional. Some properties seemed to

only pertain to speci�c formalisms. In particular, the approaches based on natural opera-

tional and denotational semantics introduced extraneous evaluation steps that complicated

the de�nition of the debugger.

There are many more interesting issues related to formally de�ning debuggers than

are even touched in this paper. There are of course many other important programming

paradigms and much more interesting debuggers. In particular, a signi�cant amount of work

has been done in debuggers for imperative languages, logic programming languages [Duc94]

and parallel programming languages. Especially interesting debugging tools include auto-

mated and algorithmic debuggers [Sha83, Duc93], and most closely related to this paper,

algorithmic debuggers for functional programming languages [NF94].

This research area does seem to have some promising applications. High-level languages

such as Haskell, SML and Prolog each have a formal de�nition at its foundations so it seems

reasonable that a debugger for such a language should have a formal de�nition that is closely

related to the de�nition of the language itself.

14

References

[BS95] Karen L. Bernstein and Eugene W. Stark. Operational semantics of a focusing de-

bugger. In Eleventh Conference on the Mathematical Foundations of Programming

Semantics, New Orleans, USA, March 1995.

[dS91] Fabio Q.B. da Silva. Correctness Proofs of Compilers and Debuggers: an Ap-

proach Based on Structured Operational Semantics. PhD thesis, University of

Edinburgh,Edinburgh, Scotland, October 1991. LFCS, Department of Computer

Science.

[Duc93] Mireille Ducass�e. A pragmatic survey of automated debugging. In 1st International

Workshop on Automated and Algorithmic Debugging, pages 1{15. Department of

Computer and Information Science, Link�oping University, May 1993.

[Duc94] Mireille Ducass�e. Logic programming environments: Dynamic program analysis

and debugging. Journal of Logic Programming, 19,20:351{384, 1994.

[Gor95] Andrew Gordon. Bisimilarity as a theory of functional programming. In Proceed-

ings of Mathematical Foundations of Programming Semantics. Elsevier Science,

1995.

[Jef95] Alan Je�rey. A fully abstract semantics for a nondeterministic functional language

with monadic types. In Proceedings of Mathematical Foundations of Programming

Semantics. Elsevier Science, 1995.

[KHC91] Amir Kishon, Paul Hudak, and Charles Consel. Monitoring semantics: A formal

framework for specifying, implementing, and reasoning about execution monitors.

In Proceedings of the ACM SIGPLAN '91 Conference on Programming Language

Design and Implementation, pages 338{352. ACM Press, June 1991.

[Kis92] Amir Shai Kishon. Theory and Art of Semantics-Directed Program Execution Mon-

itoring. PhD thesis, Yale University, May 1992.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall International,

Berlin, 1989.

[NF94] Henrik Nilsson and Peter Fritzson. Algorithmic debugging for lazy functional

languages. Journal of Functional Programming, 4(3):337{369, July 1994.

[Sch86] David A. Schmidt. Denotational Semantics: A Methodology for Language Devel-

opment. The MIT Press, Boston, Massachusetts, 1986.

[Sha83] Ehud Y. Shapiro. Algorithmic Program Debugging. ACM Distinguished Disserta-

tions. The MIT Press, Cambridge, MA, 1983.

15

[Spa94] Jan Sparud. An embryo to a debugger for Haskell. Technical report, Chalmers Uni-

versity of Technology, G�oteborg, Sweden, 1994. FTP://ftp.cs.chalmers.se:/pub/cs-

reports/papers/hsdbg.ps.gz.

[TA90] A. P. Tolmach and A. W. Appel. Debugging Standard ML without reverse engi-

neering. In 1990 ACM Conference on Lisp and Functional Programming. Associ-

ation for Computing Machinery, ACM Press, June 1990.

